
Expert Systems With Applications 236 (2024) 121268

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Computing recommendations from free-form text
Lukas Eberhard a,∗, Kristina Popova a, Simon Walk b, Denis Helic c

a Graz University of Technology, Graz, Austria
b Avery Dennison - atma.io, Graz, Austria
c Modul University Vienna, Vienna, Austria

A R T I C L E I N F O

Keywords:
Deep learning
Keyword extraction
Named entity recognition
Narrative-driven recommendations
Aspect-based sentiment analysis

A B S T R A C T

While searching for consumer goods, users frequently ask for suggestions from their peers by writing short
free-form textual requests. For example, when searching for movies users may ask for ‘‘Drama movies with
a mind-bending story and a surprise ending, such as Fight Club’’ in one of the many online discussion boards.
Despite the recent developments in large language models (LLMs) and natural language processing (NLP),
modern recommender systems still struggle to process such requests. Therefore, in this paper we evaluate
several approaches for annotating structured information from such short, free-form natural language user texts
to calculate recommendations. We set up this evaluation as a two phase processes including (a) identification
of the best NLP approach to identify key elements of users’ requests, and (b) assessment of the quality of
recommendations computed with such elements.

For our evaluation, we use a gold-standard reddit movie recommendation dataset consisting of annotations,
manually created by crowdworkers who extracted keywords, actor names and movie titles. Using this dataset
we evaluate a collection of more than 30 NLP and five recommender approaches. In addition, we perform an
ablation study to assess relative annotation importance for movie recommendations. We find that domain-
specific deep learning models, trained on a subset of data as well as embedding-based recommendation
approaches are able to match the recommendation performance of recommendations computed from manual
annotations. These promising results warrant further investigation in automatic processing of short free-form
texts for computation of recommendations. Specifically, we provide insights into which NLP models and
configurations work best for automatically annotating free text to compute (movie) recommendations, hence
substantially reducing the search space for combinations of NLP and recommendation algorithms in the movie
and potentially other domains.
1. Introduction

Although users commonly write free-form questions in online dis-
cussion forums, group chats or social media to ask other users for rec-
ommendations (Bogers & Koolen, 2017), current recommender systems
still provide only limited possibilities for retrieving recommendations
via natural text. Responses from other users to such questions are
neither instantaneous nor guaranteed and frequently lack in quality,
which results in a poor user experience. Hence, this situation raises the
need for automatic computation of recommendations from free-form
text. This need is further corroborated by recent increases in popularity
and adoption of voice assistants and chatbots (Langevin et al., 2021;
Sabir et al., 2022; Setlur & Tory, 2022), which represent only one of
many novel and unique outlets to interact with users and present rec-
ommendations (Eberhard et al., 2020; Montazeralghaem et al., 2021;

∗ Corresponding author.
E-mail addresses: lukas.eberhard@tugraz.at (L. Eberhard), kristina.popova@alumni.tugraz.at (K. Popova), simon.walk@eu.averydennison.com (S. Walk),

denis.helic@modul.ac.at (D. Helic).
1 https://chat.openai.com/

Wu et al., 2021). For example, recent advancements of large language
models (LLMs) such as OpenAI’s chatbot ChatGPT1 could be adopted
for use in recommender systems as some initial studies have already
showcased (Liu et al., 2023).

However, despite the fact that recent progress in natural language
processing (NLP) (Bhattacharjee et al., 2020; Hu et al., 2019; Li et al.,
2019, 2021), and in particular neural NLP (Do et al., 2019; Lam-
ple et al., 2016; Truşcǎ et al., 2020) and LLMs (Cui et al., 2022;
Kasneci et al., 2023; Zhang et al., 2021), allows us to, for example,
detect sentiment, extract important keywords from text with high
accuracy, enter into dialog with users, or generate high quality an-
swers to user prompts, recommender systems are still missing studies
and solutions that combine these various approaches for computing
recommendations from text.
vailable online 27 August 2023
957-4174/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.eswa.2023.121268
Received 15 February 2023; Received in revised form 26 June 2023; Accepted 19 A
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ugust 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:lukas.eberhard@tugraz.at
mailto:kristina.popova@alumni.tugraz.at
mailto:simon.walk@eu.averydennison.com
mailto:denis.helic@modul.ac.at
https://chat.openai.com/
https://doi.org/10.1016/j.eswa.2023.121268
https://doi.org/10.1016/j.eswa.2023.121268
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.
Fig. 1. Request & Suggestions Example. In the request of this reddit submission2 we
can annotate three positive movies (i.e., Secret Window, Stranger Than Fiction, The Ghost
Writer), a negative genre (i.e., horror), several positive keywords (i.e., writing, writers,
inspirational), and a positive actor name (i.e., Sean Connery). As suggestions from the
reddit community, we can extract the movies Adaptation and Finding Forrester from the
comments.

To close this research gap, we set out to systematically analyze
and evaluate a large collection of NLP and recommender algorithms
for computing recommendations from short, free-form, user-generated
text. To that end, we conduct a two-staged experiment consisting
of (i) state-of-the-art NLP methods annotating important words that
summarize user recommendation requests, and (ii) recommendation
algorithms computing recommendations from the annotated words. We
opt for such a two-staged approach to decouple elicitation of user pref-
erences (first stage) from the computation of recommendations (second
stage). Among others, such a decoupling allows us to (i) gain insight
in how users express their preferences in a short free-form text, (ii)
improve explainability of recommendations by presenting parts of the
text that most contributed to computation of recommendations, (iii) or
build detailed user profiles as a basis for collaborative recommendation
algorithms.

Hence, with our work, we answer the following research questions
(RQs):

1. Annotation Methods. Which NLP methods are suitable for au-
tomatic annotation of short user texts asking for recommenda-
tions?

2. Recommendation Accuracy. How does recommendation accu-
racy of automatic annotations compare with accuracy of high-
quality manual annotations?

3. Annotation Importance. Which annotations are most impor-
tant for computing accurate recommendations?

To answer these research questions we use movie recommenda-
tions as a case study. Specifically, we compute recommendations from
suggestion requests posted on the online discussion platform reddit3

(subreddit r/MovieSuggestions4). A typical user post can look as fol-
lows: ‘‘I really like the story of the new Tom Cruise movie, Oblivion. Could
anyone suggest me more movies like that?’’. Hence, we start by annotating
keywords, genres, movie titles or names of actors. For our example, we
can annotate Tom Cruise as a named entity (i.e., actor name), Oblivion
as a named entity (i.e., movie title), and story as a keyword (cf. Fig. 1
for another more detailed example). Also, all these annotations have a
positive sentiment, as the user stated that they liked the movie and the
actor. We can then proceed and use these annotations to compute and
rank recommendations for the user.

For evaluation of NLP annotations and their recommendations in
our experiment, we use a collection of manual annotations and user
recommendations obtained with a crowdworker experiment (Eberhard
et al., 2019). More specifically, for the automatic annotations, we

2 https://www.reddit.com/r/MovieSuggestions/comments/ssuhu
3 https://www.reddit.com/
4

2

https://www.reddit.com/r/MovieSuggestions/
assess multiple keyword extraction (KE) and deep learning (DL) models
commonly used for named entity recognition (NER) (RQ 1). Also, we
systematically assess the recommendation accuracy with automatic an-
notations by comparing them with the user and recommendations com-
puted from the crowdworker annotations (RQ 2). Lastly, we evaluate
the relative importance of various annotations with an ablation study
by leaving-out/including different sets of annotations while computing
recommendations (RQ 3).

In our dataset, we obtain the best performance with DL models
trained for NER in combination with external embedding architectures.
Further, the recommendation accuracy of an NLP ensemble method
combining best performing NLP models for individual annotation types
(i.e., keywords, movie titles, actor names) is comparable with the
recommendations computed from manual annotations. Also, the senti-
ment of the automatically extracted annotations does not significantly
improve recommendation performance as compared to manually la-
beled data with sentiment. Finally, our results suggest that movie titles
and movie keywords are the most important annotations for accurate
recommendations.

With our work, we provide a solid foundation for practitioners and
researchers of recommender systems to advance the developments in
narrative-driven recommendation scenarios. Specifically, we provide
insights into which NLP models and configurations work best for au-
tomatically annotating free text to compute (movie) recommendations,
hence substantially reducing the search space for combinations of NLP
and recommendation algorithms (RQ 1). Further, we show that the
recommendation accuracy with automatic annotations is comparable
to the accuracy obtained with high-quality manual annotations, which
makes a strong case for further investigations and developments in
recommendation approaches for free-form text (RQ 2). Finally, we
provide insight into relative importance of different types of annota-
tions for computing accurate movie recommendations from free-form
text (RQ 3).

2. Related work

2.1. Recommender systems

Recommender systems have become an integral part of our society
and can be found in nearly every modern (online) application (Lam-
precht et al., 2015; Pereira et al., 2018; Schedl et al., 2018; Smith & Lin-
den, 2017). Their goal is to help users find and uncover items, services,
or content that they are potentially interested in Ricci et al. (2011).
Traditional research in this field focuses on algorithmic developments
in processing user historic data and their profiles to compute recom-
mendations (Christakou et al., 2007; Ghosh et al., 1999; Mak et al.,
2003; Perny & Zucker, 2001). In general, Adomavicius and Tuzhilin
(2005) differentiate in their work between collaborative, content-based,
and hybrid approaches for computing recommendations.

Collaborative Filtering. Collaborative filtering extract patterns and
preferences shared among users (Terveen & Hill, 2001). To make pre-
dictions about the preferences of the current user, collaborative filtering
employs preferences of other users that are similar to the current user.
The basic idea is that if users share preferences for items then this will
be observed in these users rating those items similarly (Adomavicius &
Tuzhilin, 2005). In contrast to such user-based algorithms, item-based
collaborative filtering measures similarities between items based on
user ratings. Typical similarity metrics that are used in such scenarios
are cosine similarity or Jaccard similarity, which quantify and measure
the overlap of attributes/features between items and/or users.

More advanced collaborative filtering approach to extracting user
preferences for recommendation systems is matrix factorization. Matrix
factorization aims at decomposing the user-item interaction matrix into
two separate matrices (i.e., a user and an item matrix) that relate
users, respectively items to a set of latent factors. With this method

https://www.reddit.com/r/MovieSuggestions/comments/ssuhu
https://www.reddit.com/
https://www.reddit.com/r/MovieSuggestions/

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.

p
p
M
e
t
C
d
u
&
b
p
r
o
o
r
q
d
t
T
t
o

b
c
d
y
W

o
g
r
t
s
a
v
m
a
p
G
n
e
f
t

C
c
t
r
2
t
f
i
b
o
r
b
t
a
r

T
e
s
w

2

t
f
e
t
u
e
f
t
t
p
a
p
a
w
f
t
e
b
8
c
v
i
e
m

S
o
h
s
t
2
a
a
s
p
p
g
r

s
t
t
r
p
o
p
w
n
K
p
b

2

b
2
a
s
f
g
d

it is possible to generate recommendations for every user-item pair by
computing the product of the two matrices (Koren, 2008).

Neural Embeddings. Recently, neural networks and embedding ap-
roaches are being extensively used in collaborative filtering research,
artly exhibiting outstanding performances (Cenikj & Gievska, 2020;
usto et al., 2015; Ozsoy, 2016; Polignano et al., 2021; Stiebellehner

t al., 2018; Wang et al., 2019). Several such approaches are based on
he neural probabilistic language model word2vec, which Mikolov,
hen, et al. (2013) introduced for extraction of high-quality embed-
ings for words in texts. In such models each word is mapped to a
nique vector (Levy et al., 2015; Mikolov, Sutskever, et al., 2013; Mnih
Hinton, 2008). The doc2vec extension of word2vec introduced

y Le and Mikolov (2014) allows vector representations of complete
aragraphs and documents. The applications of language models in
ecommendation are numerous. For example, in their job posting rec-
mmendation scenario, Elsafty et al. (2018) showed that doc2vec
utperforms word2vec as well as the well-established content-based
ecommender approach called term frequency–inverse document fre-
uency (TF–IDF) when using job titles combined with full-text job
escriptions. Stiebellehner et al. (2018) applied a doc2vec representa-
ion of users and items for calculating recommendations of mobile apps.
he authors used textual app descriptions as well as app usage histories
o learn vectors each representing a mobile app user out-performing
ther state-of-the-art algorithms.

In the field of recommender system item2vec was proposed
y Barkan and Koenigstein (2016) to embed sequences of items in a
ollection of shopping baskets. Building upon this work, recommen-
ation approaches based on item2vec were proposed in the last
ears revealing promising results (Feng et al., 2017; Liang et al., 2016;
ölbitsch et al., 2019).
More recent work by Wang et al. (2019) also shows the effectiveness

f graph embeddings in a recommendation scenario. They evaluated
raph neural networks with label smoothness regularization on four
eal-world datasets of movie, book, music, and restaurant recommenda-
ions. Their method outperforms state-of-the-art baselines and achieves
trong performance in cold-start scenarios as well. Furthermore, Cenikj
nd Gievska (2020) propose to boost recommender systems with ad-
anced embedding models. They ascertained the potential benefits of
erging a language representation model with node embeddings gener-

ted by GraphSage (Hamilton et al., 2017) for improving the quality of
roduct recommendations on Amazon. In their work, Janchevski and
ievska (2019) used word2vec and the graph embedding approach
ode2vec (Grover & Leskovec, 2016) for generating text and node
mbeddings. They combined natural language processing of user pro-
iles and user generated text with graph embeddings to outperform
raditional models for subreddit recommendations.

ontent-Based Approaches. In contrast to collaborative filtering,
ontent-based approaches rely on similarities between items based on
heir features, such as actors and directors of movies, genres of songs, or
eferenced politicians and other features in news articles (Okura et al.,
017). Fu and Ma (2021) proposed an online marketing recommenda-
ion algorithm based on the integration of content and collaborative
iltering. They use the content-based methods to discover existing
nterests of users. They achieve better results than traditional content-
ased methods in terms of accuracy, recall, and diversity. The work
f Fessahaye et al. (2019) focuses on an approach to improving music
ecommendation systems. Their algorithm uses a hybrid of content-
ased and collaborative filtering as input to a DL classification model
o produce accurate recommendations with real-time prediction. They
pplied their approach on data from Spotify obtaining highly promising
esults.

his Work. In this paper, for our two-staged experiment, we apply and
valuate several state-of-the-art recommender approaches in the second
tage, including collaborative filtering, content-based approaches as
3

ell as neural embeddings using doc2vec. o
.2. Context-aware recommender systems

Besides user profiles and histories, context-aware recommender sys-
ems employ contextual information to generate recommendations that
it the current needs of the user. Contextual information can be, for
xample, the location or interests of a user in a specific situation,
he time of the day, or conditions which influence the decisions of a
ser (e.g., weather or physical condition). For example, Adomavicius
t al. (2005) investigated the effectiveness of contextual information
or movie recommendations. They suggested to exploit the informa-
ion when, where, and with whom a movie was seen to improve
he recommendations. In another example, Hariri et al. (2013) used
opular tags from social networks as additional information for article
nd music recommendations. In a study using 17 different contextual
arameters Oku et al. (2006), the authors utilized information, such
s car parking possibilities, non-smoking sections, live concerts, or
hether a restaurant has an ocean view, to improve recommendations

or restaurants. A convincing work with the goal of helping practi-
ioners and researchers understand how contextual information can be
ffectively combined with recommendation mechanisms was published
y Villegas et al. (2018). The authors conducted a meta-analysis of
7 context-aware recommender system papers about content-based,
ollaborative filtering and hybrid approaches. The main results pro-
ide a clear understanding about where context information is usually
ntegrated into the recommendation process, available techniques to
xploit context information, and the most common used evaluation
echanisms, including properties, metrics, and protocols.

ession-Based Recommendations. In recent years, session-based rec-
mmendations as a specific type of context-aware recommendation
ave gained a lot of attention from our community. The goal of such
ession-based recommendation systems is to predict immediate next ac-
ions of a user given past actions from an ongoing session (Kouki et al.,
020; de Souza Pereira Moreira et al., 2021). The studies of Ludewig
nd Jannach (2018) and Wang et al. (2021) evaluated the most recent
pproaches in the field of session-based recommendations. Their re-
ults indicate comparable and in some cases even significantly better
erformance of session-based methods as compared to more com-
lex approaches based on, for example, deep neural networks sug-
esting the importance of contextual information when computing
ecommendations.

Hence, while in the wider domain of context-aware recommender
ystems we understand fairly well how to use contextual information
o improve recommendations, we still do not understand fully how
o leverage free-form narratives describing items and preferences in
ecommender systems. Such systems are, however, sought after in many
ractical applications, such as interactive recommendation bots for
nline boards or social media. One such scenario is based on users
roviding unstructured texts to discuss and inquire recommendations
ith and from peers. This specific situation is usually referred to as
arrative-driven recommendation scenario as proposed by Bogers and
oolen (2017). Therefore, in this paper we set out to analyze how to
rocess and annotate relevant information from free-form texts that can
e utilized in a downstream recommendation task.

.3. Narrative-driven recommender systems

Narrative-driven recommendations are related to conversational-
ased recommender systems (Christakopoulou et al., 2016; Li et al.,
020; Montazeralghaem et al., 2021; Penha & Hauff, 2020), where the
lgorithm of a recommender system establishes a dialog-driven conver-
ation with the user, or—in a more traditional way—where users ask
or suggestions in a community and other users then come up with sug-
estions and possible explanations for their choices. In the recommen-
ation calculation process, a narrative explanation of the current rec-

mmendation needs of a user serves as contextual information (Bogers

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.

m
a
o
p
r
m
u
n
t
a
a
u
o
b
t
s
t
r
i
f
o
t

T
i
w
n
s
o
w
f

2

a
w
w
p
N

K
R
e
K
2
p
T
e
i
n

N
n
p
a

& Koolen, 2017; Eberhard et al., 2020, 2019). However, traditional
recommender systems still struggle to automatically transform and map
annotations or intuitions about desired entities (i.e., movie titles) from
free-form narratives to relevant recommendations.

As a result, there exist many online message boards across different
domains, allowing users to ask the community, for example, for game,5

ovie,6 or music7 suggestions, by describing their current preferences
nd what they are looking for. Other users then offer relevant rec-
mmendations, taking these provided narratives into account. In our
revious work (Eberhard et al., 2019) about narrative-driven movie
ecommendations we created a gold-standard dataset with annotations
anually labeled by crowdworkers from reddit submissions, where
sers asked the community for movie suggestions by providing such
arratives (cf. Fig. 1 for an example). Using this dataset, we evaluated
he performance of well-established algorithmic recommender systems
gainst human suggestions of the reddit community. Although Glenski
nd Weninger (2017) showed that simple models are able to predict
ser interactions, such as votes, clicks, likes or views, on reddit, rec-
mmending movies based on narrative requests on reddit exposed to
e a hard problem (Eberhard et al., 2019). The results of the analysis of
his problem in our previous work (Eberhard et al., 2020) revealed that
uggestions from the reddit community are oftentimes more diverse
han the requests, making the automatic generation of suitable movie
ecommendations on reddit a challenging task. A limitation of this work
s that we made use of crowdworkers to annotate useful information
rom the narrative requests to generate their recommendations instead
f automatically processing and annotating valuable data from the free
ext.

his Work. The most recent work—to the best of our knowledge—
n the research field of narratives in the course of the movie domain
as proposed by Musto et al. (2022). The authors focus on exploiting
arratives for automatically recognizing and extracting objective and
ubjective user preferences from narrative descriptions of user needs
btained by a questionnaire. In contrast to that, in this paper we deal
ith observational data from reddit and extract user preferences solely

rom their short free-form texts.

.4. Annotating free-form text

In this paper, in the first stage of our experiment we automatically
nnotate relevant entities (e.g., movie titles, genres, actors) and key-
ords from free-form reddit narratives and determine whether they
ere mentioned in a positive or negative context. Therefore, we im-
lement and evaluate several state-of-the art KE and DL methods for
ER. We list here the most important ones.

eyword Extraction. One simple and efficient algorithm for KE is
apid Automatic Keyword Extraction (RAKE) (Rose et al., 2010). Its
fficiency, low complexity, as well as the different way of approaching
E, are all factors in deciding to use this algorithm in our work. In
004, Mihalcea and Tarau (2004) proposed a novel solution for the
roblem of KE by representing the input text as graph called TextRank.
he algorithm does not require any deep linguistic or domain knowl-
dge to run and is fairly simple to implement. We use this algorithm
n addition to RAKE as a computationally inexpensive baseline for the
eural network models explained later in this section.

amed Entity Recognition. The past two decades yielded an extensive
umber of research works and systems for the NER task. Early ap-
roaches are either rule-based, statistical, or hybrid, while recent works
re based on language modeling with DL-based architectures (Zitouni,

5 https://www.reddit.com/r/gamingsuggestions
6 https://www.reddit.com/r/MovieSuggestions
7

4

https://www.reddit.com/r/musicsuggestions
2014). Rule-based and statistical approaches involve extraction of lexi-
cal and domain-specific features, thus classifying entities into categories
with one-layered machine learning classifiers (Mansouri et al., 2008).
Most common features include: syntactic features, part-of-speech tags,
common n-gram features, and additional lexical features (Ashwini &
Choi, 2014; Chieu & Ng, 2003; Gundogdu et al., 2018; Ritter et al.,
2011). With the rise of neural network architectures there were sig-
nificant improvements in the way NER is treated. As a replacement
to previous heavily engineered features, DL methods, such as LSTMs
(feature-based) or BERT (fine-tuning), were able to achieve impressive
results with minimal domain-specific knowledge needed (Lample et al.,
2016). Feature-based DL architectures perform by combination of var-
ious features, for instance, pre-trained word embeddings with lexical
features, and passing them through a (most often) LSTM architecture,
as described by Hochreiter and Schmidhuber (1997), that outputs
token-level class labels. These architectures are accompanied by an
extra classification layer on top of the network (Lample et al., 2016;
Panchendrarajan & Amaresan, 2019). Fine-tuning approaches (BERT),
on the other hand, require no feature engineering and work effectively
with limited amounts of labeled data (Bhattacharjee et al., 2020).

At the highest level, there are two ways to approach NER with
DL methodologies: (i) by passing target text to existing NER solutions,
and (ii) by performing preprocessing and feature extraction steps and
training task-specific DL classifiers. The first possibility of handling
NER is with the usage of NER tools implemented within NLP libraries,
consisting of pre-trained entity recognizers on large corpuses. One
popular library that offers handling of NER is SpaCy,8 an open-source
industrial-strength NLP library implemented in Python, which offers
multiple functionalities for text processing, tokenization, visualization,
etc. These tools have been tested against the state-of-the-art bench-
marks and have shown to achieve high accuracy9 in NER tasks. Its
computational speed when handling large volumes of data, along with
the ability to re-train models or use separate components of its language
modeling pipelines make it useful for usage solely as a NER tool as well
as a feature-extraction tool for our latter approaches.

The second option is creating task-specific NER pipelines from
scratch. We focused on two main DL approaches. One is BERT, a pow-
erful language representation model used for a variety of complex NLP
tasks and has achieved state-of-the-art results in most NLP sub-fields.
The model takes tokenized sentences as input and the parameters are
fine-tuned in an end-to-end manner, which makes it convenient for any
downstream task (Devlin et al., 2018). In this paper, we use BERT for
identifying and labeling of a custom-defined set of entities (e.g., movie
titles, actors, etc.) in a token-wise fashion. Later research works offer
modifications of the basic BERT architecture which vary in different
parameters (e.g., number of layers, trainable hyperparameters, training
sets). For our experiments we choose RoBERTa by Liu et al. (2019)
and XLM-RoBERTa by Conneau et al. (2020). In addition, we also
explore the BiLSTMs (Bidirectional Long Short-Term Memory Neural
Networks) which are designed for complex NLP tasks, and as such,
they handle NER successfully, as shown by Chiu and Nichols in their
work from 2016. BiLSTMs are able to classify based on a combination
of input features. As word embedding features, we use deep contextu-
alized word representations from Embeddings from Language Models
(ELMO), a sophisticated language modeling technique which captures
the context meaning of a word, along with its complex characteristics,
such as syntax and semantics (Peters et al., 2018). We retrieve the other
feature groups that we use in our experiments with the SpaCy and NLTK
packages for text processing.

Sentiment Analysis. Aspect-based sentiment analysis (ABSA) is an NLP
subtask that inherits its challenges from NER, with the additional task

8 https://spacy.io/
9 https://spacy.io/usage/facts-figures

https://www.reddit.com/r/gamingsuggestions
https://www.reddit.com/r/MovieSuggestions
https://www.reddit.com/r/musicsuggestions
https://spacy.io/
https://spacy.io/usage/facts-figures

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.

A
s
s
e
f
(
t
s
A
b
a
u
E
a
R

S
i
t
t
s
m
a
a
f
t
a
f

T
f
b
a
m
d
r
c
t
o

3

D
(

Fig. 2. Data Preparation. This figure depicts the data processing pipeline for creating the manually labeled gold-standard annotations that we use in this paper. Crowdworkers
annotated movie titles, genres, actor names and keywords from r/MovieSuggestions submissions as well as movie titles from comments (i.e., suggestions from other users),
including their sentiment. For our automatically extracted annotations, we use NER, KE approaches and sentiment detection to automate the work conducted by crowdworkers for
the gold-standard annotations.
of classifying sentiments expressed towards an identified entity into
positive or negative.

Related works have shown that heavily relying on hand-crafted
features in ABSA does not lead to optimal results, which are rather
achieved by combining features with word representations as contex-
tual embeddings, obtained with pre-trained DL architectures (i.e., BERT
or ELMO) (Do et al., 2019; Li et al., 2019; Truşcǎ et al., 2020).

spect-based sentiment analysis is performed either as a sequence of
ubtasks, where NER and the target sentiment analysis are separate
ubtasks, or is solved in an end-to-end fashion (Hu et al., 2019; Li
t al., 2021). In our experiments, we opt for the latter as the previous
indings show better performance in this case. For instance, Cai et al.
2020) explain that treating ABSA as separate subtasks fails to capture
he implicit relationships between aspects and their corresponding
entiments, while Liu et al. (2020) describe how systems that treat
BSA subtasks simultaneously are superior at modeling the connections
etween the target and the sentiment. Zeng et al. (2019) discuss how
pplying one model that unifies the label space for ABSA rather than
sing a pipeline of models is more practical in real-world applications.
xample are systems where the response time to the user is important
nd separate models increase this time, as discussed by Vazan and
azmara (2021) in their work.

equence Labeling Format. The extraction of entities from sentences
s usually performed by labeling the sentences ‘‘token-wise’’. Typically,
he assigned labels indicate the boundary and entity type of the current
oken (Jurafsky & Martin, 2009). In this process, the BIO labeling
cheme, proposed by Ramshaw and Marcus (1999), is the most com-
only used format with three types of labels that can be assigned to
token: B (begin of an entity), I (inside an entity), and O (outside of

ny entity). Following our previous discussion on ABSA, we have opted
or a unifying label strategy, similar to the one of Zeng et al. (2019),
hat captures all information for a word in one label (border, entity
nd sentiment), especially for its simplicity and ease of maintenance
or practical solutions.

his Work. In contrast to these previous studies, in this paper we
ocus on creating a fully automated recommendation framework. We
uild upon our previous work in narrative-driven recommendations
nd a large body of literature in NLP. Hence, we do not build new NLP
ethods but evaluate the existing ones for their efficiency for narrative-
riven recommendations. In particular, we use the manually labeled
eddit dataset to train NLP models which we then apply to automati-
ally annotate important entities in narratives. Moreover, we analyze
he importance of the types of annotation to get a better understanding
f the impact of the annotations for the final recommendation quality.

. Materials & experiments

ataset. For our experiments, we use a crowdworker-created dataset
5

Eberhard et al., 2019), which consists of annotated submissions and
Table 1
Reddit dataset statistics.

#Requests 1,480
#Request Authors 1,244

#Movies in Requests 5,521
#Unique Movies in Requests 1,908
#Requests With Positive Movies 1,480
#Requests With Negative Movies 77

#Keywords in Requests (Without Common Words) 4,492 (3,947)
#Unique Keywords in Requests (Without Common Words) 1,878 (1,762)
#Requests With Positive Keywords 1,202
#Requests With Negative Keywords 152

#Genres in Requests 762
#Unique Genres in Requests 25
#Requests With Positive Genres 459
#Requests With Negative Genres 55

#Actors in Requests 100
#Unique Actors in Requests 79
#Requests With Positive Actors 73
#Requests With Negative Actors 7

#Suggestions 43,402
#Unique Suggestions 6,071
#Suggestion Authors 7,431
Average #Suggestions per Request 29.33
Average Duration Between Request and Suggestion 31 h 41 min

This table shows the statistics of the manually labeled reddit dataset (Eberhard et al.,
2020, 2019).

comments from reddit (Baumgartner et al., 2020), more specifically
from the subreddit r/MovieSuggestions. Particularly, the dataset con-
tains reddit submission IDs, titles, and original texts, as well as, an-
notations from crowdworkers including keywords, movie titles, actor
names, and genres. In addition, all annotations have sentiment (positive
or negative) depending on whether the users liked or disliked a particu-
lar entity in their submissions. Lastly, we also link all movie titles with
their corresponding IDs from the Internet Movie Database10 (IMDb).
In total, we have 1480 submissions with 1908 unique movies and
21,032 comments including more than 43,000 individual suggestions and
6071 unique movies as suggestions. Fig. 2 depicts the data preparation
process.

Each recommendation request in the dataset includes one or more
positively mentioned movies, which are examples of movies that the
user liked before. Moreover, requests often include additional infor-
mation, such as negatively mentioned movies (i.e., movies that the
user did not like before), positively and negatively mentioned keywords
(describing further aspects of the movies), as well as genres, and actors.
We list all the details of our dataset in Table 1.

10 https://www.imdb.com

https://www.imdb.com

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.
Fig. 3. Process Flow of Automatic Annotation. This figure shows the entire process flow of extracting entities and keywords with NLP pipeline. The figure is divided in three
subsections. The topmost shows the training process from the moment the submission enters the process to the moment it exits the preprocessing steps and enters the NLP model.
The model then outputs the learned weights and can be used to label new test submissions which undergo the same preprocessing flow (apart from token labeling). The model
outputs a set of tokenized sentences and the corresponding label for each token. This output enters the final stage of transformation (in the last subsection) where consecutive
labels are identified and their corresponding tokens are assembled into words and phrases. As a final step, the titles are matched with their IMDb identifier.
We show a typical example of such a request from our dataset
in Fig. 1, in which crowdworkers annotated three positive movies
(i.e., Secret Window, Stranger Than Fiction, The Ghost Writer), one neg-
ative genre (i.e., horror), three positive keywords (i.e., writing, writers,
inspirational), and one positive actor (i.e., Sean Connery). We also show
two examples of comments, each of them having a single suggestion,
the movie Adaptation in the first and the movie Finding Forrester in the
second one.

Experiments. In this paper, we conduct our experiments in the follow-
ing two stages:

1. First, we train KE and NER models by processing free-form
text contributions (i.e., the recommendation requests and replies
to these). We evaluate the annotation accuracy of the individ-
ual approaches using our manually labeled reddit dataset as a
gold-standard.

2. Second, we evaluate the performance of the best KE and NER
models (and their ensembles) from the first stage by using their
annotations as input for several state-of-the-art recommendation
algorithms. Also, for this evaluation we use our gold-standard
dataset.

With our two-staged experimental setup we specifically aim at eval-
uating intermediate results produced by NLP to gain insights into which
NLP methods are well suited for such recommendation scenarios. These
new insights may result in a substantial reduction of the number of
possible combinations of NLP methods and recommendation algorithms
in future developments, e.g., by reducing the complexity and compu-
tation time of downstream hyperparameter optimization tasks. Hence,
with our experiments we lay a solid foundation for future research
as well as practical implementations in the field of narrative-driven
recommendations.

4. Automatic annotations

In this section, we describe our experiments with various state-of-
the-art NLP models for automatically annotating short, free-form texts.
To this end, we develop two general scenarios: (i) we use combinations
of KE and pre-trained NER models in a transfer learning setting with
minimal preprocessing (NLP baselines) and, (ii) we build complete
DL pipelines with several distinct processing and training stages (NLP
pipelines). On the one hand, NLP baselines should provide us with gen-
6

eral insights on suitability of off-the-shelf NLP methods for annotations
of free-form recommendation requests for movies. Potentially, these
results and insights can be transferred to further domains such as music,
games, or books. On the other hand, NLP pipelines are domain-specific
models, requiring extensive training but optimized for a specific task
and domain such as movies. Here, processing and training steps, as well
as, DL architectures can be possibly transferred to additional domains.

NLP Baselines. We opt for minimal preprocessing and only remove
accents, URLs, markdown, non-latin characters, and stopwords. We
pass the preprocessed submissions to existing KE and NER solutions,
which then output the relevant keywords and entities. We extract
and evaluate each annotation type separately. We use the following
methods: RAKE (Rose et al., 2010) and TextRank (Mihalcea & Tarau,
2004) for keyword retrieval and SpaCy’s pre-trained large English NER
model11 for actor names and movie titles (we use its ‘person’ and ‘work-
of-art’ entities as a replacement for ‘actor’ and ‘movie’). In addition,
for genre identification, we use the IMDb’s list of 24 movie genres
and perform simple word matching on the submissions. The baseline
algorithms we have selected have one common characteristic—they all
behave as a black box, i.e., they accept raw text (or in our case min-
imally processed text) and output annotations without model training
or text transformation.

NLP Pipelines. For each NLP approach that we analyze, we build and
train a classification pipeline for extraction of all relevant annotations
including movie titles, actors, keywords, and genres. The pipeline con-
sists of five stages: (i) preprocessing of the submissions text, (ii) feature
extraction, (iii) class labeling, (iv) classification of labeled data, and
(v) assembly and annotations matching. Fig. 3 visually represents the
entire flow of a submission through an NLP pipeline, including both the
training and testing/inference processes.

Preprocessing. We first concatenate the submission title and text and
remove URLs/HTML elements with regular expressions. Next, we re-
move upper and lower case variations of the words ‘‘Request’’ and
‘‘Suggestion’’ at the beginning of the submission title. We keep stop-
words, numbers, and punctuation, as they are frequently contained in

11 https://spacy.io/models/en#en_core_web_lg

https://spacy.io/models/en#en_core_web_lg

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.

L
s
s
s
t
t
m
k

Table 2
Classifier Input After Preprocessing, Feature Extraction, and Labeling.

ID Token/Word POS TF isAlpha isStopword Label

v830o A 90 .00209 1 1 O
v830o psychological 84 .00025 1 0 B-keyword-pos
v830o Thriller 92 .000053 1 0 B-genre-pos
v830o in 85 .00823 1 1 O
v830o the 90 .02118 1 1 O
v830o vein 92 .000169 1 0 O
v830o of 85 .017237 1 1 O
v830o Se7en 93 .0002217 0 0 B-movie-pos

We depict the results of preprocessing, feature extraction and labeling on the first eight tokens from a submission (cf. Fig. 4) from our dataset.
Such results serve as input to our DL classifiers. We also show a selection of features that we extract including: POS tags (enumerated by
SpaCy), term frequency, and isAlpha/isStopword (is the token alphanumerical or a stopword). Note that we extract further features, which we
do not depict here due to the space restrictions. These features include word embeddings, sentiment and further lexical/syntactical features.
Finally, the last column shows the assigned labels. These labels represent the classification target for the classifier, which is trained in the next
step of NLP pipelines.
movie titles. Lastly, we tokenize the submissions with the NLTK regular
expression tokenizer12 preserving the punctuation.

Feature Extraction. In this stage, we extract a total of 147 hand-picked
features and 1024 deep contextual (ELMO) features for each token. In
particular, we extract the following feature groups:

(i) Lexical and syntactic features describing the tokens in terms
of their position in the sentence, their syntactical dependencies
to the other tokens, their format, and their lexical categories.
These features include: word root form (lemma), syntactic parent
(based on syntactic dependency parser13), POS tag, language,
Brown cluster (Brown et al., 1992), as well as boolean-value
features that indicate whether the token is alphanumerical, ascii,
upper/lower case, brackets, and so on. The complete list of
features are listed in the SpaCy documentation.14

(ii) Contextual embeddings from language models, i.e., ELMO15 for
each word/token.

(iii) Context-sensitive tensors (or dense word vector representations16)
are word embeddings provided by SpaCy’s small (‘‘_sm’’) English
models17. Note: We use SpaCy’s large English model in our
baseline models, but the small version for computing features
for the NLP pipelines.

(iv) Sentiment features, which we calculate with Vader.18 We extract
positive, negative, neutral and compound sentiment scores for
each token, as well as for its neighboring tokens. As an additional
feature, we also compute the ratio between the compound score
of the current word and the current submission.

(v) TF–IDF: we calculate the frequency and importance of the token
in the dataset. We compute TF as the total number of occur-
rences divided by the total number of tokens in the corpus and
IDF as the logarithm of the total number of submissions divided
by the number of submissions that contain the token.

abeling. We apply Beginning, Inside and Outside (BIO) token labeling
cheme on each annotation type, e.g., B-movie, I-movie, B-actor, and
o on. To represent the token sentiment, we extend the labels with a
entiment post-fix. For example, for this part of a sentence ‘‘[...] loved
he new Top Gun [...]’’, we first obtain the following tokens [loved,
he, new, Top, Gun] and then label them as [O, O, B-keyword-pos, B-
ovie-pos, I-movie-pos] for Outside, Outside, Beginning of a positive

eyword, Beginning of a positive movie, and Inside of a positive movie.

12 https://www.nltk.org/api/nltk.tokenize.regexp.html
13 https://spacy.io/api/dependencyparser
14 https://spacy.io/api/token
15 https://tfhub.dev/google/elmo/3
16 https://spacy.io/api/doc
17 https://spacy.io/usage/spacy-101/
18
7

https://www.nltk.org/api/nltk.sentiment.vader.html
Fig. 4. Annotation Example. An example of a Request19 where the crowdworkers
identified one movie and keyword and three genres, all positive. Based on these
annotations, our labeling component created a BIO label for each token of the tokenized
submission. Note: The original annotation contains the movie IDs. We first retrieve the
actual title and then we perform the labeling.

We label the data automatically by using the crowdworker annotations
from our dataset. In particular, for every token:

(i) If the token matches any annotation from crowdworkers re-
gardless its position, we label it with the corresponding type
(e.g., actor), otherwise we label it as ‘O’.

(ii) We add the corresponding sentiment post-fix if the crowdwork-
ers annotated sentiment.

(iii) If we labeled the current token with an annotation type, we
check its predecessor to add positional labels. Hence, if the
predecessor is labeled as ‘O’ or a different type, we assign ‘B’
to the current token. Otherwise, if the predecessor has the same
type, we additionally label the current token with ‘I’.

(iv) We perform a second pass to correct possibly wrongly labeled
tokens based on a set of pre-defined rules. For example, if in the
first pass we labeled ‘‘is’’ with an annotation label such as movie,
we check whether the neighboring tokens are also labeled with
movie labels. If that is not the case, we change the label of ‘‘is’’
to ‘O’. We keep a manually curated list of such stopwords that
frequently get wrongly labeled with annotation labels for the
second labeling pass.

Fig. 4 shows the comparison between an original submission and
crowdworker annotations against the tokenized submission and trans-
formed labels to BIO format. The extracted submission features are
depicted in Table 2.

Classifiers. Using the labeled data we build several token classification
models. The classification models can be divided into two groups,

19 https://www.reddit.com/r/MovieSuggestions/comments/v830o

https://www.nltk.org/api/nltk.tokenize.regexp.html
https://spacy.io/api/dependencyparser
https://spacy.io/api/token
https://tfhub.dev/google/elmo/3
https://spacy.io/api/doc
https://spacy.io/usage/spacy-101/
https://www.nltk.org/api/nltk.sentiment.vader.html
https://www.reddit.com/r/MovieSuggestions/comments/v830o

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.

i
t
m
(
m
a
e

A
p
n
s
f
l
z

Table 3
Baseline Results.

Model \ Metric Precision Recall F1 score

RAKE (Keywords) 0.073 [0.063 – 0.082] 0.869 [0.844 – 0.894] 0.134 [0.118 – 0.150]
SpaCy (Movie Titles) 0.758 [0.595 – 0.930] 0.067 [0.047 – 0.086] 0.123 [0.089 – 0.156]
SpaCy (Actor Names) 0.066 [0.022 – 0.106] 0.929 [0.857 – 1.000] 0.124 [0.049 – 0.196]
IMDb Match. (Genres) 0.675 [0.591 – 0.766] 0.468 [0.412 – 0.525] 0.552 [0.499 – 0.613]

The table shows scoring results for all four annotation types. We list the averages and the bootstrapped confidence intervals.
Table 4
Results Associated With Positive Entities.

Model \ Metric Precision Recall F1 score

Keywords
BiLSTM (ELMO) 0.514 [0.467 – 0.561] 0.498 [0.442 – 0.552] 0.506 [0.465 – 0.548]
RoBERTa large 0.502 [0.454 – 0.550] 0.413 [0.359 – 0.466] 0.454 [0.411 – 0.498]
BERT base multilingual cased 0.598 [0.536 – 0.661] 0.301 [0.255 – 0.348] 0.400 [0.352 – 0.450]
BERT large cased 0.598 [0.542 – 0.654] 0.405 [0.353 – 0.455] 0.483 [0.436 – 0.531]

Genres
BiLSTM (ELMO) 0.775 [0.699 – 0.858] 0.723 [0.647 – 0.805] 0.748 [0.690 – 0.816]
RoBERTa large 0.735 [0.590 – 0.885] 0.181 [0.109 – 0.248] 0.291 [0.196 – 0.387]
BERT base multilingual cased 0.763 [0.686 – 0.847] 0.613 [0.532 – 0.698] 0.680 [0.616 – 0.753]
BERT large cased 0.797 [0.724 – 0.875] 0.662 [0.583 – 0.745] 0.723 [0.663 – 0.793]

Actors
BiLSTM (ELMO) 0.156 [0.000 – 0.282] 0.294 [0.017 – 0.526] 0.204 [0.017 – 0.367]
RoBERTa large 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000]
BERT base multilingual cased 0.353 [0.063 – 0.581] 0.400 [0.133 – 0.646] 0.375 [0.135 – 0.607]
BERT large cased 0.279 [0.010 – 0.465] 0.333 [0.128 – 0.524] 0.303 [0.106 – 0.488]

Movies
BiLSTM (ELMO) 0.798 [0.754 – 0.843] 0.673 [0.623 – 0.721] 0.730 [0.692 – 0.768]
RoBERTa large 0.773 [0.728 – 0.818] 0.476 [0.415 – 0.536] 0.589 [0.539 – 0.641]
BERT base multilingual cased 0.716 [0.675 – 0.760] 0.438 [0.398 – 0.479] 0.544 [0.507 – 0.582]
BERT large cased 0.700 [0.650 – 0.750] 0.428 [0.390 – 0.465] 0.531 [0.496 – 0.567]
feature-based and fine-tuned models. Feature-based models consist of
several BiLSTM-based models built in Keras20 differing in their archi-
tectures, while for the second group of models we use a fine-tuning
approach of several pre-trained BERT-based models.

Each feature-based model is built in a similar manner with an
equal number of levels. However, at each level we add a different
number of layers depending on the number of features. We experiment
with different features in terms of groups, for instance, ELMO features
and hand-picked features, only hand-picked features, and so on. Each
feature group gets processed in a separate flow of stacked layers before
they are passed to a concatenation layer prior to a BiLSTM layer. Fi-
nally, for each model, the output layer is a time distributed dense layer
with a softmax activation function. After the feature concatenation
layer and the BiLSTM layer, we experiment with dropout values in the
range [0.25, 0.75] in steps of 0.05.

For the second group of models we fine-tune several BERT-like
mplementations using the Hugging Face.21 We extend and fine-tune
hese models by adding the token clasifier at the top of each individual
odel. Specifically, we use the following architectures: BERT base

cased and uncased), BERT large (cased and uncased), BERT base
ultilingual (cased and uncased) (Devlin et al., 2018), RoBERTa base

nd RoBERTa large (Liu et al., 2019) and XLM-RoBERTa base (Conneau
t al., 2020). We train all of our fine-tuning models in 20 epochs.

ssembly and Annotations Matching. As our classification models only
redict the BIO labels for tokens, in the final step we assemble an-
otations (with corresponding types and BIO labels) and perform a
imilarity matching for movie titles with movies from IMDb. We per-
orm the similarity matching with a variant of the Ratcliff-Obershelp
ongest connected matching subsequence algorithm (Ratcliff & Met-
ener, 1988), which computes the similarity in the range [0, 1]. We

20 https://keras.io/
21 https://huggingface.co/
8

experiment with several similarity thresholds from 0.6 to 0.9, selecting
only those movie titles exceeding this similarity threshold.

Evaluation. For the evaluation of our models, we compare the auto-
matically annotated entities with the manually labeled reddit annota-
tions. We chronologically split our data for training (80%) and testing
(20%). As our baseline models are pre-trained, training data is only
used for training of NLP pipelines. However, the same test data is used
for evaluation of both the baselines and the pipelines to ensure a fair
comparison. Also, as we do not extract sentiment with our baselines, we
treat all of the detected entities as positive during baselines evaluation.

We evaluate our pipelines in two stages. First, we evaluate the
performance of classifiers at the level of individual tokens. Second, we
select the best performing models from the previous stage to assembly
and match the annotations. We then evaluate these final annotations in
the same way as the baseline models, with the crucial difference that
annotations from the pipelines also include sentiment. For consistency,
we keep the same percentage of the reddit data for testing, but addi-
tionally we split the training set into training and validation sets for
the pipelines. We do a random split, but keep the same seed for every
model, so that we can have comparable validation results.

For all evaluation tasks we compute precision, recall, and F1 score
using the crowdworked dataset as the ground truth. Since the num-
ber of annotations per submissions vary (i.e., imbalanced classes) we
compute the micro average for each metric to weigh each annotation
equally.

4.1. Results

Baseline Methods. In Table 3 we show the baseline results (only
for positive annotations). For genre annotations, the simple matching
of tokens against a set of IMDb genres made correct guesses in ap-
proximately 68% of cases. We apply SpaCy for annotating both, actor
names and movie titles, and obtain opposing precision and recall scores.

We hypothesize that this is due to the different structure of these

https://keras.io/
https://huggingface.co/

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.

a
b
f
t
f
(
t
S

t
s
r
p
w
r
b
n
s

p
r
t
O
a
w

h
b
w
B
f
l

m

Table 5
Results associated with negative entities.

Model \ Metric Precision Recall F1 score

Keywords
BiLSTM (ELMO) 0.389 [0.148 – 0.653] 0.108 [0.020 – 0.185] 0.169 [0.052 – 0.287]
RoBERTa large 0.290 [0.117 – 0.508] 0.169 [0.032 – 0.303] 0.214 [0.078 – 0.379]
BERT base multilingual cased 0.286 [0.000 – 0.571] 0.031 [0.000 – 0.062] 0.056 [0.000 – 0.111]
BERT large cased 0.351 [0.153 – 0.536] 0.200 [0.091 – 0.300] 0.255 [0.142 – 0.380]

Genres
BiLSTM (ELMO) 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000]
RoBERTa large 0.400 [0.000 – 0.800] 0.143 [0.000 – 0.286] 0.211 [0.000 – 0.421]
BERT base multilingual cased 0.778 [0.556 – 0.956] 0.500 [0.231 – 0.769] 0.609 [0.417 – 0.865]
BERT large cased 0.818 [0.636 – 1.000] 0.643 [0.363 – 0.911] 0.720 [0.543 – 0.964]

Actors
BiLSTM (ELMO) 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000]
RoBERTa large 1.000 [1.000 – 1.000] 0.250 [0.000 – 0.500] 0.400 [0.000 – 0.800]
BERT base multilingual cased 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000]
BERT large cased 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000]

Movies
BiLSTM (ELMO) 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000]
RoBERTa large 0.900 [0.800 – 1.000] 0.214 [0.000 – 0.400] 0.346 [0.087 – 0.637]
BERT base multilingual cased 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000] 0.000 [0.000 – 0.000]
BERT large cased 1.000 [1.000 – 1.000] 0.024 [0.000 – 0.048] 0.047 [0.013 – 0.093]
entities. In particular, we obtain a recall of 0.929 and precision of 0.066
for actors indicating a lot of false positives. As SpaCy recognizes the
entity ‘person’ rather than ‘actor’ a lot of persons other than actors are
also detected. On the other hand, movies obtain a precision of 0.758
and recall of 0.067 using SpaCy’s label ‘work-of-art’. We hypothesize
that due to heterogeneity of movie titles, a little less than 10% are
detected. When annotating keywords, we obtain a high recall (0.879)
with substantial amount of false positives resulting in a precision of
only 0.073. We obtain these results with RAKE, as shown in Table 3.

DL Pipeline Evaluation. In the first evaluation stage (precision, recall,
nd F1 score measured on token labeling), we evaluated 23 feature-
ased and 9 fine-tuning models. Out of those 32 classifiers, we select
our classifiers with the highest average precision scores for all tokens
o evaluate them in the final assembly and matching stage. Those
our models include a BiLSTM with ELMO embeddings as features
feature-based), BERT large cased model (fine-tuned), BERT base mul-
ilingual cased (fine-tuned), and a RoBERTa large model (fine-tuned).
ee Appendix A for the average results on all our model configurations.

In Tables 4 and 5 we show the performance metrics for all annota-
ions with DL methods. We start with the top section of both tables
howing the results of annotating positive and negative keywords,
espectively. While BERT large cased model has the best precision on
ositive keywords, BiLSTM (ELMO) outperforms the rest of the models
ith a recall of 0.498 obtaining also the highest F1 score of 0.506. This

ecall is significantly lower than the keywords baseline recall of 0.879,
ut the model reduces the false positives by approximately 40%. For
egative keywords, the BERT large cased model scored the highest F1
core of 0.255, outperforming other models.

For the annotations of positive genres, all models achieve a high
recision (> 0.73). BiLSTM (ELMO) outperforms the baseline and the
est of the models with recall of 0.723. However, BiLSTM (ELMO) fails
o detect any negative keywords (resulting in precision and recall of 0).
n the other hand, BERT large cased captures approximately 64% of
ll the negative genres and nearly 82% of its negative genre predictions
ere correct (cf. Table 5).

Overall, for the annotation of actors we obtain poor results. We
ypothesize that this is due to a small sample size and a major class im-
alance between positively and negatively mentioned actors (e.g., there
ere only 7 negatively mentioned actors; cf. Table 1). Nevertheless,
ERT base multilingual cased scored higher than the rest of the models
or detecting positive actors, whereas for the negative actors, RoBERTa
arge is the only model that made any predictions.

Finally, in Tables 4 and 5 we show the results for annotation of
9

ovie titles, both positive and negative in the bottom sections. We
Table 6
Ensemble Approach.

Entity Sentiment Model

Movies Positive BiLSTM (ELMO)
Negative RoBERTa large

Keywords Positive BiLSTM (ELMO)
Negative BERT large cased

Genres Positive BiLSTM (ELMO)
Negative BERT large cased

Actors Positive BERT base multilingual cased
Negative RoBERTa large

This table shows the models that we use for our ensemble approach that we eventually
use in the second stage of our experiments, the recommendation task. For each entity
type and sentiment, we use the best performing NLP model from the first stage,
respectively.

report the results that we obtain with the best performing similarity
threshold of 0.7. As the number of positive movie titles is the largest
of all annotation types resulting in a sufficiently large training dataset,
we obtain better results than for annotation of actors. BiLSTM (ELMO)
outperforms other models at annotating positive movies (F1 score
0.730) while RoBERTa large has the best results for negative movies
(e.g., precision of 0.9 and recall of 0.214).

In summary, we observe that different models favor different an-
notation types and therefore we combine the best performing models
for individual annotation types (in terms of F1 score) into a combined
ensemble approach. In Table 6 we provide an overview of this ensemble
approach with the NLP models used. In Fig. 5 we show an example of
a submission and the annotations that we produce with our ensemble
approach.

5. Movie recommendations

Similar to our previous work (Eberhard et al., 2019), we implement
several recommender approaches including item-based collaborative
filtering (CF), matrix factorization, TF–IDF, doc2vec, and a network-
based approach that is built on a graph of actors. To that end, we collect
user reviews and individual user ratings for all movies on IMDb in
addition to the publicly available IMDb dataset. We only keep movies
and discard all other types, such as TV series or episodes. To allow
for fair comparisons between the different approaches and to minimize
noise in the data, we only consider movies that have (i) more than 1000
user ratings, (ii) at least one user review, (iii) a movie description, and
(iv) at least one person in the cast. We obtain the rating thresholds

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.
Fig. 5. Example of Entity Annotation by NLP Ensemble Approach. Based on the
same reddit submission22 as used in Fig. 1, this example shows the desired annotation
by our ensemble approach. The goal is that the used KE and NER models annotate the
following entities: three positive movies (i.e., Secret Window, Stranger Than Fiction, The
Ghost Writer) annotated by BiLSTM (ELMO), a negative genre (i.e., horror) annotated by
BERT large cased, several positive keywords (i.e., writing, writers, inspirational) annotated
by BiLSTM (ELMO), and a positive actor name (i.e., Sean Connery) annotated by BERT
base multilingual cased.

for movies (1000) and users (no limit) via hyperparameter grid search
in our previous work (Eberhard et al., 2019). Further, to improve the
overall performance of all implemented recommender approaches we
compute centered ratings (Desrosiers & Karypis, 2011; Resnick et al.,
1994) by removing user and item bias (Eberhard et al., 2019).

We generate recommendations by computing similarities between
a movie given in the recommendation request and all other movies
available in our dataset. As similarity measure we use either cosine
similarity or Euclidean distance (determined via hyperparameter opti-
mization in our previous work (Eberhard et al., 2019)). In cases where
there is more than one input movie we aggregate similarity values as
evaluated in our previous work (Eberhard et al., 2019).

For the rating-based approaches (i.e., matrix factorization and item-
based CF) we leverage the centered user ratings to create an IMDb
user-ratings matrix. We factorize the IMDb user-ratings matrix in a
standard manner by minimizing a regularized squared error with a
stochastic gradient descent (Funk, 2006). We then use cosine similarity
to compute similarity between the obtained movie factors. For the item-
based CF approach we use the IMDb user-ratings vectors of two movies
to compute cosine similarity (Eberhard et al., 2019).

For the text-based recommender algorithms (i.e., TF–IDF and
doc2vec) we leverage movie descriptions and user reviews from IMDb
to find similar movies by their similarity. We compute the TF–IDF
score (Salton & McGill, 1983) of terms in the movie description and
user reviews for each movie. To compute the similarity between movies
we use normalized TF–IDF vectors and the reciprocal of Euclidean
distance (Eberhard et al., 2019). We use doc2vec to generate a
document vector for each movie and use these vectors to compute
cosine similarities between movies.

After training and optimizing our recommender approaches on
IMDb data, we fine-tune them on our manually labeled reddit dataset
(cf. Fig. 6). In particular, using the annotations from submissions as
input (e.g., annotated movie titles) for IMDb recommendation engines,
we first retrieve candidate recommendations (i.e., movies most similar
to the input movies) and then use a set of post filters to re-rank
these recommendations to better match user suggestions from a given
submission. In addition to the algorithmic score (i.e., similarity values
obtained from respective recommendation approach) of each candi-
date recommendation, we add several scores computed by re-ranking
modifiers. In our fine-tuning step, we learn the optimal weights of
these post filter scores by cross-validation as described in our previous
work (Eberhard et al., 2019). Aggregating all these weighted scores
for each candidate movie results in final recommendation scores that
provide the order of the final recommendation list. In this paper, we
apply the following re-ranking modifiers:

(i) Popularity and rating modifier increases IMDb recommendation
scores proportional to the popularity of a movie on IMDb (i.e.,

22 https://www.reddit.com/r/MovieSuggestions/comments/ssuhu
10
how many users rated the movie on IMDb) and its average IMDb
rating.

(ii) Genre, year, and keyword modifier to strengthen the similarity
between movies with similar genres, plot keywords, or the years
the movies were released, respectively based on IMDb data.

(iii) Submission genre and keyword modifier to produce better ranks
in the final recommendation list for movies with genres or
keywords provided in the narrative of the submission on reddit.

To learn the optimal modifier weights for fine-tuning, we conduct a
grid search experiment over all combinations of modifier weights in the
range [0.0, 1.0] in steps of 0.2. We fine-tune the weights for manually as
well as automatic NLP annotations using our NLP ensemble. To further
optimize the final recommendation list we implement additional post
filters as follows:

(i) Prequel and sequel filter to remove potential movies from the rec-
ommendation list that follow or are followed by a given movie
in a movie franchise (e.g., if a user asks for recommendations
similar to the first Lord of the Rings movie, the other episodes
of the trilogy would be removed from the recommendation list).

(ii) Submission year and actor filter to filter out movies that do not
fulfill the requirements a user requested in the narrative on
reddit in terms of the produced year of a movie or involved
actors in a movie.

Evaluation. We evaluate the performance of the fine-tuned crowd-
worker and NLP recommenders by comparing their recommendations
with the user suggestions from reddit submissions. In addition to fully
fine-tuned recommenders, we also evaluate a simple NLP baseline
approach without sentiment (i.e., each entity is considered as positive)
and without fine-tuning (i.e., we use the modified weights from crowd-
worker recommender based on doc2vec). For evaluation, we chrono-
logically split the dataset in 80% for validation and hyperparameter
optimization and 20% for testing.

To assess the relative importance of each annotation type we con-
duct an ablation study. Hence, in addition to the general experiment
with all annotations, we also run four further experiments using (i) only
movie titles, (ii) movie titles and genres, (iii) movie titles and keywords,
and (iv) movie titles and actors as input for computation of recom-
mendations. We repeat each of these experiments two times, once with
sentiment and once without sentiment (i.e., we set the sentiment for all
annotations to positive).

Lastly, as the NLP ensemble approach has a coverage of 90% (i.e., it
annotates movie titles in 9 out of 10 submissions), for fair comparison
with crowdworker recommender, we reduce our test set to include
only covered submissions. For comparison we calculate common evalu-
ation metrics for recommender systems (i.e., precision, recall, F1 score,
nDCG, and MAP @1023) for each submission and report their overall
means over the whole test set (i.e., macro average).

5.1. Results

Overall, the doc2vec algorithm outperforms all other algorithms.
To save space, we describe detailed recommendation results only for
this recommendation approach. The detailed results for the remaining
algorithms are in Appendix C. The best performing doc2vec configu-
ration uses vectors of dimension 500 (optimized over range [100, 1000]
in steps of 100) and cosine similarity (optimized among inverse Eu-
clidean distance and cosine similarity) to compute similarities between
input movies and movies from the IMDb (cf. Eberhard et al., 2019).

23 This means that recall@10 and F1 score@10 have an upper limit of 0.45
and 0.59 respectively, as the number of movie suggestions from the community
varies per submission in the test set (i.e., 29.42 movie suggestions on average).

https://www.reddit.com/r/MovieSuggestions/comments/ssuhu

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.
Fig. 6. Recommender Experiment. This figure depicts the recommendation experiment. In a first step, we use IMDb data to train our doc2vec model. Second, we use annotated
submissions (i.e., automatically or manually from the crowdsourced gold-standard dataset) from r/MovieSuggestions and optimize post filters on the movies suggested by users on
r/MovieSuggestions.
Table 7
Recommender results.

Entities Sentiment ¯ [CI] < [CI]

Movies all pos. 0.1174 [0.1033, 0.1309] 0.1148 [0.1008, 0.1283]
pos./neg. 0.1185 [0.1044, 0.1320] 0.1148 [0.1008, 0.1283]

Movies | Genres all pos. 0.1201 [0.1059, 0.1337] 0.1173 [0.1029, 0.1310]
pos./neg. 0.1204 [0.1061, 0.1340] 0.1168 [0.1024, 0.1306]

Movies | Keywords all pos. 0.1250 [0.1107, 0.1387] 0.1211 [0.1068, 0.1349]
pos./neg. 0.1253 [0.1112, 0.1390] 0.1228 [0.1085, 0.1365]

Movies | Actors all pos. 0.1152 [0.1016, 0.1284] 0.1145 [0.1004, 0.1280]
pos./neg. 0.1183 [0.1044, 0.1316] 0.1145 [0.1004, 0.1280]

Movies | Genres | Keywords | Actors all pos. 0.1244 [0.1103, 0.1380] 0.1228 [0.1083, 0.1368]
pos./neg. 0.1257 [0.1115, 0.1395] 0.1244 [0.1099, 0.1384]

This table compares the doc2vec performances (F1 scores) of the approach with manual (¯) and automatic NLP annotations (<) once considering all entities
as positive (all pos.) and once with positive and negative sentiment (pos./neg.). The best performing option is highlighted in bold face. The most important
annotations for both the manual and the automatic approach are movies and keywords. Adding genres and actors only slightly improves the performance in both
cases. The bootstrapped 95% confidence intervals ([CI]) show no significant differences between any of the configurations.
In Table 7 we list the results of our recommendation experiments
including the ablation study. Note that we list only F1 scores@10 as
the rankings are same for all other evaluation metrics. As expected,
we achieve the best performance for both, the crowdworker and au-
tomatic approach, with all annotations included, closely followed by
recommendations computed only from movie titles and keywords. The
overlapping 95% confidence intervals (on a bootstrapped test dataset)
show that there are no significant differences neither between auto-
matic and manual annotations regardless of the annotations included
nor within automatic or crowdworker recommendations regardless of
annotation type or sentiment.

In Fig. 7 we depict the fine-tuned modifier weights for both manual
and automatic annotations. Although there are only minor differences,
we find that for the crowdsourced approach the algorithmic score
computed via doc2vec exhibits higher importance than for the ap-
proach with automatically labeled data. As the optimized weight for
the IMDb genre modifier is zero for both approaches, the similarity of
genres on IMDb between movies does not improve the recommendation
accuracy and is therefore totally neglected for generating the final
recommendations.

Finally, we achieve an F1 score of 0.1063 for the baseline NLP
approach. However, as the coverage of this approach in the test set
is only ∼12.5% (i.e., it annotates movie titles in only 1 out of 8 sub-
missions), this approach fails to produce movie recommendations in a
huge majority of cases.

6. Discussion

Annotation Methods (RQ 1). Despite the recent successes of BERT-
based approaches at various language modeling tasks (Min et al., 2021),
in our dataset BiLSTM with ELMO was the best performing approach for
11
Fig. 7. Post Filter Weights. This figure shows the optimized post filter weights based
on manually labeled data (¯) and based on automatically extracted annotations via
NLP (<). We find only one minor difference between the post filter weights of the
two approaches which is the algorithmic score. The algorithmic score of the manual
approach has a marginally higher weight (i.e., 1.0) than the NLP approach (i.e., 0.8).
All other post filters have identical ideal weights.

detecting positive movies, keywords, and genres. We hypothesize that
this is due to specific representation of tokens via contextual features.
In particular, during preprocessing we preserved several punctuation
characters that are frequently written in front of and/or after a movie
title. For example, in our dataset, users have frequently enclosed movie
titles in brackets, quotation marks, or have listed movie titles in sepa-
rate lines of text. Hence, by learning representations of such characters,
the model learned to better detect a movie title (among other features)
by its specific position in the sentence, i.e., following or being in front
of such punctuation and white-space characters.

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.

T
p
o
o
a

f
f
i
t
f
F
t
t
t

d
t
k
t
b
q
a
W
o

R
I
p
m
b
s
o
b
a
d
t

N
t
t
a
f
i
m
e
d
v
f
p

o
t
e
t
M
m
s
w
e

L
w
p
a
I
s
p
F
m
s
w
d
a

a
d
s
b
r
l
c
r
u
c
p
t
a
o
M
v

t
c
t
i
w
i
r

Further, all of our models performed significantly better while
annotating positive entities as opposed to negative ones. We believe
that this is due to a substantial data imbalance (we had approximately
95% of positive and only 5% of negative annotations, cf. Table 1),
indicating that in our dataset, users tend to talk of positive experiences
rather than negative ones, resulting in a positivity bias (Huang et al.,
2020; Pradel et al., 2012). One possibility to improve the performance
of negative annotations could be to increase the number of negative
samples with data augmentation techniques (Chen et al., 2021; Su-
tiono & Hahn-Powell, 2022). However, data augmentation cannot solve
the problems of an indirect and implicit expression of sentiment by
users. For instance, the following sentence is a typical example of how
users express negative sentiment: ‘‘[...] And while we’re at it, nothing
with Arnold Schwarzenegger in it, because I’ve seen his movies so many
times, he used to be my hero.’’. The model correctly identified Arnold
Schwarzenegger as an actor but a positively mentioned actor rather
than a negatively mentioned one. The model has a problem recognizing
negative sentiment in such cases, as there are no explicit words that
express a negative sentiment, and additionally, this sentence contains
a positive sentiment towards the actor in the past, but a negative one
in the present.

Regarding the detection of keywords and genres, we observed that
they often get mixed up by classifiers as genres can be seen as a special
kind of keywords coming from a predefined set. For this reason a simple
string matching baseline for genres did almost as well as DL models.

Comparing crowdworker and automatic annotations of movie titles,
crowdworkers did significantly better on recognizing abbreviations. For
example, crowdworkers were able to recognize abbreviations, such as
‘‘LOTR’’ as ‘‘Lord of the Rings’’, or ‘‘movies by QT ’’ as movies by Quentin

arantino, whereas NLP approaches did not, as our automatic labeling
rocess was not able to match abbreviation with full movie titles. While
ne possible solution to this problem would be to define a dictionary
f frequent abbreviations, this dictionary would need constant updates
s new movies, new actors, or new directors appear.

Also, while expanding annotated movie titles to provide more input
or recommendation engines we observed some problems, in particular
or the cases of sequels and prequels. For example, in a submission
ncluding ‘‘Lord of The Rings’’, the model correctly annotates the movie
itle. Expanding this movie title to include potential prequels or sequels
ails in some cases as the complete titles, such as ‘‘Lord of the Rings: The
ellowship of the Ring ’’, are not directly match-able. However, reducing
he similarity threshold to match prequels and sequels also increases
he likelihood for false positives and movie titles resulting in ‘‘Lord of
he Dogs’’ being matched.

In summary, despite the data limitations (e.g., small sample and
ata imbalance), our NLP pipelines still perform reasonably well in
he detection of non-traditional entities such as movie titles or movie
eywords. We do believe that we have not used the full potential of
he BERT architectures, and further adjustments could lead to even
etter results. Obtaining labeled data in the proper format and of good
uality, still remains a challenge, which is why we believe that future
pproaches should be optimized to work in a fully end-to-end fashion.
e see this investigation as an interesting and important avenue for

ur future research.

ecommendation Accuracy and Annotation Importance (RQ 2 &3).
n our dataset we observed that automatic NLP annotations lead to com-
arable (statistically indistinguishable) recommendation accuracy as
anual annotations. The high overlap in optimized post filter weights

etween the manual and the automatic approach corroborates the
imilarity of the extracted entities that serve as basis for the rec-
mmender engine. However, automatic annotations scale significantly
etter than the manually extracted ones (Appelt et al., 1993; Cimi-
no et al., 2004). Also, as we did not observe statistically significant
ifferences in recommendation results when using different annota-
12

ion types, we suggest to concentrate the efforts in improving the
LP extraction on a few most important annotations. In our case,
hese were movie titles and keywords. This result is in line with
he findings of our previous work (Eberhard et al., 2020), where we
nalyzed the importance of entities—annotated by crowdworkers—in
ree-form text, and found that other annotations (e.g., actors) do not
mprove the recommendation accuracy. The importance of keywords in
ovie recommender systems was also already highlighted by Stanescu

t al. (2013) and Szomszor et al. (2007). We speculate that in similar
omains that deal with consumer goods, such as music, books, or
ideo games, the results would replicate. However, this should be con-
irmed with further experiments and studies, which we see as another
romising direction for future work.

Our recommendation results with the NLP baseline showed that
ff-the-shelf KE and NER models without training and optimizing are
ypically not sufficiently good for free-form text recommendation tasks,
xcept in some special cases, such as movie genre annotations. Rather,
raining and fine-tuning of more sophisticated NLP pipelines is needed.
oreover, constructing ensemble approaches with the best performing
odels for each annotation type is of primary importance as our results

uggest. This finding is also in line with the work from Tao et al. (2021)
here an ensemble NLP approach led to the best annotation results. We
xpect that this translates in a similar way also to other domains.

imitations & Future Work. In the process of annotating movie titles,
e compare them to a pool of only ∼12,000 English movie titles of
opular movies on IMDb (cf. Eberhard et al., 2019). This includes only
small fraction of all movies ever made (i.e., more than 500,000 on

MDb) and hence constitutes a limitation of this work. Therefore, the
election likely introduces biased results due to the limited size of our
otential recommendation candidates, which we need to be aware of.
or a real world application, filtering of movies should be reduced to a
inimum to keep the recommendation candidate pool as large as pos-

ible. However, while potentially not all 500,000 movies are relevant,
e want to identify the best balance between recommendation novelty,
iversity and accuracy. A possible solution for this problem could be the
pplication of doc2vec using all possible movie titles.

Another limitation of our work is that we applied our whole NLP
nd recommender pipeline on a single dataset only. Moreover, our
ataset is composed only from reddit data, in particular from a single
ubreddit. In addition, we also work with data from IMDb. Hence,
esides the relatively small movie pool from IMDb, the used number of
eddit submissions with 1480 is also rather small. However, we would
ike to point out that our dataset is of high quality as it was manually
urated in a crowdsourcing experiment. Moreover, to substantiate our
esults we applied statistical testing in all of our experimental eval-
ations. Hence, we bootstrapped the dataset to obtain bootstrapped
onfidence intervals and statistically test and compare various ap-
roaches. Therefore, we are confident that our results may transfer
o further movie datasets and potentially even to further domains
fter fine-tuning and updating the models. However, to substantiate
ur findings, investigations on further, larger movie datasets such as
ovielens24 as well as further domains, such as book, board game, or

ideo game recommendations, are necessary.
Another promising research avenue for future work is the inves-

igation of LLMs for elicitation of user preferences, understanding of
omplex user requests, as well as direct computation of recommenda-
ions. As LLMs can perform both tasks from our two-staged approach,
.e., extraction of user preferences and recommendation computations
e plan a detailed analysis of their applicability for each of the stages

ndividually as well as for both stages combined in a unified narrative
ecommendation framework.

24 https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.

F
w
e
a

m
i
e

7. Conclusions

In this paper, we analyzed several algorithms specialized for KE
and NER and two DL approaches for identification of custom defined
entities (including keywords), and compared the obtained entities with
the ones annotated by crowdworkers in our gold-standard.

We achieved the best results for positive movies, keywords and gen-
res using a BiLSTM network with a wrapped ELMO layer for extracting
contextual embeddings, a cased BERT model (large) for the recognition
of negative keywords and genres, a large RoBERTa model for negative
movie titles and actor names, and a base multilingual cased BERT for
the identification of positive actor names. We then applied state-of-
the-art recommender algorithms onto the automatically annotated data
and compared the recommendation results to the results based on our
gold-standard manually labeled annotations. With this fully automated
annotation and recommendation process we found only small and not
significant performance leaps to the manually labeled version.

The contributions of this paper are twofold. First, we evaluate the
performance of KE and NER algorithms/models compared to manu-
ally labeled annotations. Second, we measure the impact of the dif-
ferences between automatically extracted annotations and manually
labeled annotations in a downstream recommendation experiment. We
strongly believe that our contributions are an important building block
for existing and future recommender systems that aim to improve
their functionality with specific user generated requests and interactive
components.

CRediT authorship contribution statement

Lukas Eberhard: Conceptualization, Methodology, Software,
Validation, Writing – original draft, Visualization. Kristina Popova:
Methodology, Software, Validation, Data curation, Writing – original
draft, Visualization. Simon Walk: Conceptualization, Writing –
review & editing. Denis Helic: Conceptualization, Writing – review
& editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request

Appendix A. Model token level evaluation

In this section we provide the average precision, recall and F1 scores
from the token classification stage on all models that we trained. We
also provide details on all of our model configurations.

Table A.8 shows the average scores of our fine-tuned models. Since
fine-tuning them with different set of hyperparameters did not produce
mentionable differences in the outcomes, we include only one configu-
ration of each fine-tuned model. All of the fine-tuned models we present
have the following configurations: learning rate = 0.00001, batch size =
4, gradient threshold = 1.0 and we set number of training epochs = 20.
or the feature-based models, we take slightly different approach. Since
e train them completely from scratch, we experiment with: the type of
mbedding layer, number of features, dropout, neurons in the BiLSTM
nd recurrent dropout.

We group the models based on the embedding layer into: base
odels (have a regular embedding input layer that enumerates the

nput tokens), feature models (same embedding layer as base mod-
13

ls, concatenated with an input of hand-picked features), ELMO (the
basic embedding layer gets replaced with an ELMO layer that pro-
duces contextual embeddings), ELMO features (concatenation of the
contextual embeddings with the hand-picked features.) We combine
features according to their feature groups: 40 (lexical, syntactical, TF
and IDF features), 50 (previous features plus sentiment features), 143
(previous features plus dense word representations). The rest of the
configurations for each of the models is shown in Table A.9.

We give the detailed results of the best highlighted models from
Tables A.8 and A.9 in Table A.10.

Appendix B. Model architectures

In this section we depict the model architectures used in our NLP
pipelines. The figures show pre-processed and tokenized submissions as
inputs to the models and how the models produce the labeled tokens
(see Figs. B.8–B.10).

Appendix C. Detailed recommender experiment results

This section provides detailed results of the recommender experi-
ment. Fig. C.11 shows the fine-tuned modifier weights for both manual
C.11(a) and automatic C.11(b) annotations. We find a similar pattern
across all approaches. The algorithmic recommendation score, the pop-
ularity of movies as well as the narrative-based keywords are the most
important features. This result corroborates the findings of our previous
work (Eberhard et al., 2020).

Table C.11 shows the results (F1 scores) of all applied approaches
with manual and automatic NLP annotations once considering all en-
tities as positive and once with positive and negative sentiment. The
evaluated approaches are doc2vec, item-based collaborative filtering
(CF), matrix factorization (MF), a TF–IDF approach, and a network-
based approach. The most important annotations for both the manual
and the automatic approach are movies and keywords. Adding genres
and actors only slightly improves the performance in both cases. The
bootstrapped 95% confidence intervals show no significant differences
between the performances based on different entities. We find that the
doc2vec approach leads to significantly better results in some of the
cases than other approaches.

25 https://huggingface.co/docs/transformers/index
26 https://tfhub.dev/google/elmo/3

https://huggingface.co/docs/transformers/index
https://tfhub.dev/google/elmo/3

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.
Table A.8
Fine-Tuned Models Average Results.

Model \ Metric P R F1

BERT base (uncased) 0.40 0.40 0.37
BERT base (cased) 0.50 0.39 0.42
BERT large (uncased) 0.41 0.29 0.33
BERT large (cased) 0.55 0.40 0.45
BERT base multilingual (uncased) 0.44 0.40 0.39
BERT base multilingual (cased) 0.56 0.38 0.43
RoBERTa base 0.36 0.23 0.27
RoBERTa large 0.58 0.37 0.42
XLM RoBERTa base 0.13 0.07 0.06

The table shows nine fine-tuned models from the BERT family. Overall, as entity extraction is highly case-
sensitive, the cased models perform better than the uncased ones. BERT large (cased), BERT base multilingual
(cased) and RoBERTa large show superior overall results in comparison to the rest of the models.
Table A.9
Feature-Based Models Average Results.

Model \ Metric P R F1

Base BiLSTM 1 (dropout 0.1, units 100, recurrent dropout 0.3) 0.42 0.33 0.34
Base BiLSTM 2 (dropout 0.5, units 100, recurrent dropout 0.3) 0.47 0.30 0.32
Base BiLSTM 3 (dropout 0.3, units 150, recurrent dropout 0.3) 0.42 0.30 0.32
Base BiLSTM 4 (dropout 0.5, units 200, recurrent dropout 0.7) 0.37 0.34 0.33
Base BiLSTM 5 (dropout 0.5, units 150, recurrent dropout 0.7) 0.41 0.32 0.33
Features (143) 1 (dropout 0.3, units 200, recurrent dropout 0.5) 0.39 0.29 0.31
Features (143) 2 (dropout 0.3, units 150, recurrent dropout 0.5) 0.40 0.33 0.35
Features (143) 3 (dropout 0.1, units 100, recurrent dropout 0.3) 0.43 0.32 0.35
Features (40) 1 (dropout 0.1, units 200, recurrent dropout 0.4) 0.41 0.35 0.36
Features (40) 2 (dropout 0.3, units 100, recurrent dropout 0.5) 0.39 0.33 0.36
Features (50) 1 (dropout 0,1, units 100, recurrent dropout 0.5) 0.46 0.32 0.34
Features (50) 2 (dropout 0.1, units 100, recurrent dropout 0.3) 0.47 0.33 0.34
Features (50) 3 (dropout 0.3, units 100, recurrent dropout 0.5) 0.42 0.31 0.32
ELMO 1 (dropout 0.2, units 512, recurrent dropout 0.35) 0.52 0.39 0.43
ELMO 2 (dropout 0.5, units 512, recurrent dropout 0.35) 0.54 0.45 0.48
ELMO 3 (dropout 0.35, units 150, recurrent dropout 0.35) 0.50 0.40 0.42
ELMO 4 (dropout 0.35, units 512, recurrent dropout 0.5) 0.51 0.43 0.46
ELMO features (40) 1 (dropout 0.3, units 512, recurrent dropout 0.5) 0.53 0.46 0.49
ELMO features (40) 2 (dropout 0.2, units 512, recurrent dropout 0.5) 0.51 0.43 0.45
ELMO features (40) 3 (dropout 0.2, units 512, recurrent dropout 0.3) 0.53 0.42 0.45
ELMO features (50) 1 (dropout 0.3, units 512, recurrent dropout 0.7) 0.51 0.42 0.45
ELMO features (50) 2 (dropout 0.1, units 512, recurrent dropout 0.7) 0.52 0.40 0.43
ELMO features (50) 3 (dropout 0.7, units 512, recurrent dropout 0.5) 0.52 0.43 0.45

The table shows the average precision, recall and F1 scores of the token classification stage for the feature-based models. For every sub-group of models we
experimented with different dropout levels and units in the BiLSTM layer, as well as recurrent dropout values. The results show that, despite carefully chosen,
the hand-picked features do not play a significant role in the results improvement, and the greatest jump in model performance is due to the ELMO contextual
embbeddings. We tried other variations of hyperparameters, but they, however, do not show significant changes to the models in the table.
Table A.10
Best Models Results.

Model ELMO RoBERTa BERT base BERT large
multilingual cased cased

Tag \ Metric P R F1 P R F1 P R F1 P R F1

B-movie-pos 0.89 0.89 0.89 0.77 0.66 0.71 0.85 0.66 0.74 0.84 0.69 0.76
I-movie-pos 0.90 0.87 0.88 0.80 0.79 0.79 0.92 0.72 0.80 0.93 0.70 0.80
B-genre-pos 0.73 0.80 0.76 0.79 0.27 0.40 0.77 0.74 0.75 0.72 0.77 0.74
I-genre-pos 0.95 0.80 0.86 0.88 0.80 0.83 0.90 0.86 0.88 0.88 0.32 0.47
B-actor-pos 0.58 0.54 0.56 0.50 0.10 0.17 0.50 0.27 0.35 0.61 0.37 0.46
I-actor-pos 0.57 0.50 0.53 0.69 0.35 0.46 0.65 0.42 0.51 0.73 0.42 0.54
B-keyword-pos 0.61 0.45 0.51 0.48 0.36 0.41 0.61 0.39 0.48 0.65 0.54 0.59
I-keyword-pos 0.48 0.32 0.38 0.45 0.33 0.38 0.51 0.23 0.32 0.50 0.32 0.39
B-movie-neg 0.00 0.00 0.00 0.38 0.15 0.21 0.00 0.00 0.00 0.50 0.05 0.09
I-movie-neg 0.00 0.00 0.00 0.67 0.14 0.23 0.00 0.00 0.00 0.00 0.00 0.00
B-genre-neg 0.50 0.06 0.10 0.50 0.06 0.10 0.80 0.44 0.57 0.67 0.56 0.61
B-actor-neg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I-actor-neg 0.00 0.00 0.00 1.00 0.25 0.40 0.00 0.00 0.00 0.00 0.00 0.00
B-keyword-neg 0.67 0.15 0.24 0.31 0.21 0.35 0.36 0.10 0.15 0.33 0.24 0.28
I-keyword-neg 0.75 0.14 0.23 0.27 0.13 0.18 1.00 0.04 0.08 0.40 0.09 0.14

The table shows the scores for every token type for the best four models: ELMO, RoBERTa, BERT base multilingual (cased), and BERT large (cased). The results for ‘I-genre-neg’
are not included as there was no token associated with the tag in the test set present.
14

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.
Fig. B.8. Architecture of Fine-Tuning Models. This figure shows the overall architecture used for all of our fine-tuning models. For all of the models listed in Table A.8 we
used its corresponding pre-trained model from the Transformers package.25 We did not alter anything within these models, but only fine-tuned them by altering the parameters
for the linear token classification layer. All of the pre-trained models come with a word-piece tokenizer that transforms the tokens such that it splits them further to a base token
and a continuation token (starts with ‘##’). The tokenizer also appends special tokens such as ‘CLS’ and ‘SEP’, which indicate the class and the separator to the next submission,
respectively. All of the consecutive WordPiece tokens first inherit the label of the base token. These labels are then transformed to word-level labels in the subsequent phase of
the classification.
15

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.

l
i
a

Fig. B.9. Architecture of Feature-Based Models With ELMO Embeddings. This figure shows the overall architecture used for our feature-based models with an ELMO embedding
ayer. Subfigure (a) is an example of a model with additional hand-picked features, passed in a separate input layer, and then concatenated with the ELMO embeddings. Models
n subfigure (b) follow the same architecture but without hand-picked features and without concatenation layer. The embeddings are generated in a lambda layer, which wraps
n entire pre-trained ELMO model. This is a separate model and we do not alter its architecture, we only set its output dimensions.26

Table C.11
Recommender Results.

Entities Sentiment ¯ [CI] < [CI]

doc2vec CF MF TF–IDF Network doc2vec CF MF TF–IDF Network

Movies
all pos. 0.1174 0.0961 0.1088 0.0930 0.0562 0.1148 0.0901 0.1028 0.0883 0.0530

[0.1033, 0.1309] [0.0846, 0.1071] [0.0963, 0.1208] [0.0813, 0.1042] [0.0475, 0.0644] [0.1008, 0.1283] [0.0781, 0.1014] [0.0905, 0.1145] [0.0768, 0.0992] [0.0437, 0.0617]

pos./neg. 0.1185 0.0975 0.1095 0.0926 0.0568 0.1148 0.0901 0.1026 0.0878 0.0530
[0.1044, 0.1320] [0.0859, 0.1085] [0.0970, 0.1214] [0.0808, 0.1038] [0.0481, 0.0650] [0.1008, 0.1283] [0.0782, 0.1014] [0.0903, 0.1144] [0.0763, 0.0988] [0.0437, 0.0617]

Movies | Genres
all pos. 0.1201 0.0982 0.1130 0.0938 0.0573 0.1173 0.0905 0.1046 0.0908 0.0529

[0.1059, 0.1337] [0.0862, 0.1096] [0.1001, 0.1253] [0.0821, 0.1050] [0.0481, 0.0660] [0.1029, 0.1310] [0.0788, 0.1017] [0.0924, 0.1164] [0.0794, 0.1018] [0.0437, 0.0615]

pos./neg. 0.1204 0.0991 0.1135 0.0932 0.0576 0.1168 0.0901 0.1042 0.0897 0.0529
[0.1061, 0.1340] [0.0871, 0.1106] [0.1006, 0.1258] [0.0814, 0.1045] [0.0483, 0.0663] [0.1024, 0.1306] [0.0785, 0.1014] [0.0920, 0.1160] [0.0783, 0.1008] [0.0437, 0.0615]

Movies | Keywords
all pos. 0.1250 0.1114 0.1228 0.1087 0.0620 0.1211 0.1080 0.1147 0.1053 0.0587

[0.1107, 0.1387] [0.0992, 0.1233] [0.1100, 0.1352] [0.0970, 0.1200] [0.0528, 0.0708] [0.1068, 0.1349] [0.0952, 0.1203] [0.1019, 0.1269] [0.0929, 0.1171] [0.0497, 0.0674]

pos./neg. 0.1253 0.1120 0.1214 0.1104 0.0611 0.1228 0.1096 0.1150 0.1057 0.0584
[0.1112, 0.1390] [0.0998, 0.1238] [0.1086, 0.1338] [0.0987, 0.1216] [0.0520, 0.0697] [0.1085, 0.1365] [0.0968, 0.1218] [0.1023, 0.1272] [0.0934, 0.1175] [0.0493, 0.0670]

Movies | Actors
all pos. 0.1152 0.0939 0.1068 0.0911 0.0544 0.1145 0.0900 0.1023 0.0879 0.0523

[0.1016, 0.1284] [0.0833, 0.1043] [0.0953, 0.1179] [0.0800, 0.1017] [0.0461, 0.0623] [0.1004, 0.1280] [0.0781, 0.1014] [0.0900, 0.1141] [0.0764, 0.0989] [0.0430, 0.0610]

pos./neg. 0.1183 0.0968 0.1090 0.0915 0.0557 0.1145 0.0900 0.1022 0.0874 0.0523
[0.1044, 0.1316] [0.0858, 0.1075] [0.0970, 0.1206] [0.0801, 0.1023] [0.0472, 0.0638] [0.1004, 0.1280] [0.0781, 0.1014] [0.0898, 0.1139] [0.0759, 0.0984] [0.0430, 0.0610]

Movies | Genres | Keywords | Actors
all pos. 0.1244 0.1124 0.1232 0.1066 0.0614 0.1228 0.1068 0.1171 0.1059 0.0578

[0.1103, 0.1380] [0.1007, 0.1239] [0.1112, 0.1351] [0.0950, 0.1179] [0.0523, 0.0702] [0.1083, 0.1368] [0.0943, 0.1188] [0.1046, 0.1292] [0.0939, 0.1175] [0.0489, 0.0662]

pos./neg. 0.1257 0.1151 0.1233 0.1094 0.0617 0.1244 0.1079 0.1166 0.1055 0.0571
[0.1115, 0.1395] [0.1028, 0.1271] [0.1104, 0.1357] [0.0975, 0.1210] [0.0523, 0.0707] [0.1099, 0.1384] [0.0954, 0.1199] [0.1041, 0.1287] [0.0935, 0.1172] [0.0483, 0.0656]

This table compares the performances (F1 scores) of all applied approaches with manual (¯) and automatic NLP annotations (<) once considering all entities as positive (all pos.) and once with positive
and negative sentiment (pos./neg.). The evaluated approaches are doc2vec, item-based collaborative filtering (CF), matrix factorization (MF), a TF–IDF approach, and a network-based approach. The most
important annotations for both the manual and the automatic approach are movies and keywords. Adding genres and actors only slightly improves the performance in both cases. The bootstrapped 95%
confidence intervals ([CI]) show no significant differences between the performances based on different entities. We find that the doc2vec approach leads to significantly better results in some of the
cases than other approaches.
16

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.
Fig. B.10. Architecture of Base Feature-Based Models. This figure shows the overall architecture used for our base feature-based models. They only differ from the ELMO models
in the embeddings they use. These models use a regular Keras Embedding layer that turns tokens into dense vectors of fixed size. These vectors are not as highly context-sensitive
as ELMO embeddings, resulting in inferior performance.
17

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.
Fig. C.11. Post Filter Weights. These plots show the optimized post filter weights based on manually labeled data (¯) in Fig. C.11(a) and based on automatically extracted
annotations via NLP (<) in Fig. C.11(b) for every evaluated approach. We find a similar pattern across all approaches. The algorithmic recommendation score, the popularity of
movies as well as the narrative-based keywords are the most important features.
18

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.

A

A

A

B

B

B

B

B

C

C

C

C

C

C

C

C

C

C

D

D

D

E

E

E

F

F

F

F
G

G

G

G

H

H

H

H

H

J

J

References

Adomavicius, G., Sankaranarayanan, R., Sen, S., & Tuzhilin, A. (2005). Incorporat-
ing contextual information in recommender systems using a multidimensional
approach. ACM Transactions on Information systems (TOIS), 23(1), 103–145. http:
//dx.doi.org/10.1145/1055709.1055714.

domavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering, 17(6), 734–749. http://dx.doi.org/10.1109/
TKDE.2005.99.

ppelt, D. E., Hobbs, J. R., Bear, J., Israel, D., & Tyson, M. (1993). FASTUS: A finite-
state processor for information extraction from real-world text. In IJCAI, vol. 93
(pp. 1172–1178).

shwini, S., & Choi, J. D. (2014). Targetable named entity recognition in social
media. Computing Research Repository (CoRR), http://dx.doi.org/10.48550/arXiv.
1408.0782.

arkan, O., & Koenigstein, N. (2016). ITEM2vec: Neural item embedding for collab-
orative filtering. In 2016 IEEE 26th international workshop on machine learning for
signal processing (pp. 1–6). http://dx.doi.org/10.1109/MLSP.2016.7738886.

aumgartner, J., Zannettou, S., Keegan, B., Squire, M., & Blackburn, J. (2020). The
pushshift reddit dataset. In Proceedings of the international AAAI conference on web
and social media, vol. 14 (pp. 830–839). http://dx.doi.org/10.1609/icwsm.v14i1.
7347.

hattacharjee, K., Ballesteros, M., Anubhai, R., Muresan, S., Ma, J., Ladhak, F., &
Al-Onaizan, Y. (2020). To BERT or not to BERT: Comparing task-specific and task-
agnostic semi-supervised approaches for sequence tagging. In Proceedings of the
2020 conference on empirical methods in natural language processing (pp. 7927–7934).
Online: Association for Computational Linguistics, http://dx.doi.org/10.18653/v1/
2020.emnlp-main.636.

ogers, T., & Koolen, M. (2017). Defining and supporting narrative-driven recom-
mendation. In Proceedings of the eleventh ACM conference on recommender systems
(pp. 238–242). New York, NY, USA: Association for Computing Machinery, http:
//dx.doi.org/10.1145/3109859.3109893.

rown, P. F., Della Pietra, V. J., deSouza, P. V., Lai, J. C., & Mercer, R. L. (1992).
Class-based n-gram models of natural language. Computational Linguistics, 18(4),
467–480, URL: https://aclanthology.org/J92-4003.

ai, H., Tu, Y., Zhou, X., Yu, J., & Xia, R. (2020). Aspect-category based sentiment
analysis with hierarchical graph convolutional network. In Proceedings of the
28th international conference on computational linguistics (pp. 833–843). Barcelona,
Spain (Online): International Committee on Computational Linguistics, http://dx.
doi.org/10.18653/v1/2020.coling-main.72, URL: https://aclanthology.org/2020.
coling-main.72.

enikj, G., & Gievska, S. (2020). Boosting recommender systems with advanced
embedding models. In Companion proceedings of the web conference 2020 (pp. 385–
389). New York, NY, USA: Association for Computing Machinery, http://dx.doi.
org/10.1145/3366424.3383300.

hen, S., Aguilar, G., Neves, L., & Solorio, T. (2021). Data augmentation for cross-
domain named entity recognition. http://dx.doi.org/10.48550/arXiv.2109.01758,
arXiv.

hieu, H. L., & Ng, H. T. (2003). Named entity recognition with a maximum entropy
approach. In Proceedings of the seventh conference on natural language learning at
HLT-NAACL 2003 (pp. 160–163). URL: https://aclanthology.org/W03-0423.

hiu, J. P., & Nichols, E. (2016). Named entity recognition with bidirectional LSTM-
CNNs. Transactions of the Association for Computational Linguistics, 4, 357–370.
http://dx.doi.org/10.1162/tacl_a_00104.

hristakopoulou, K., Radlinski, F., & Hofmann, K. (2016). Towards conversational
recommender systems. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining (pp. 815–824). New York, NY,
USA: Association for Computing Machinery, http://dx.doi.org/10.1145/2939672.
2939746.

hristakou, C., Vrettos, S., & Stafylopatis, A. (2007). A hybrid movie recommender
system based on neural networks. International Journal on Artificial Intelligence Tools,
16(05), 771–792. http://dx.doi.org/10.1142/S0218213007003540.

imiano, P., Handschuh, S., & Staab, S. (2004). Towards the self-annotating web. In
Proceedings of the 13th international conference on world wide web (pp. 462–471).
http://dx.doi.org/10.1142/S0218213007003540.

onneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F.,
Grave, E., Ott, M., Zettlemoyer, L., & Stoyanov, V. (2020). Unsupervised cross-
lingual representation learning at scale. In Proceedings of the 58th annual meeting
of the association for computational linguistics (pp. 8440–8451). Online: Association
for Computational Linguistics, http://dx.doi.org/10.18653/v1/2020.acl-main.747.

ui, Z., Ma, J., Zhou, C., Zhou, J., & Yang, H. (2022). M6-Rec: Generative pre-
trained language models are open-ended recommender systems. http://dx.doi.org/
10.48550/arXiv.2205.08084, arXiv:2205.08084.

esrosiers, C., & Karypis, G. (2011). A comprehensive survey of neighborhood-based
recommendation methods. In Recommender systems handbook (pp. 107–144). Boston,
MA: Springer US, http://dx.doi.org/10.1007/978-0-387-85820-3_4.

evlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of
deep bidirectional transformers for language understanding. Computing Research
Repository (CoRR), http://dx.doi.org/10.48550/arXiv.1810.04805.
19
o, H. H., Prasad, P., Maag, A., & Alsadoon, A. (2019). Deep learning for aspect-based
sentiment analysis: A comparative review. Expert Systems with Applications, 118,
272–299. http://dx.doi.org/10.1016/j.eswa.2018.10.003.

berhard, L., Walk, S., & Helic, D. (2020). Tell me what you want: Embedding
narratives for movie recommendations. In Proceedings of the 31st ACM conference
on hypertext and social media (pp. 301–306). New York, NY, USA: Association for
Computing Machinery, http://dx.doi.org/10.1145/3372923.3404818.

berhard, L., Walk, S., Posch, L., & Helic, D. (2019). Evaluating narrative-driven movie
recommendations on reddit. In Proceedings of the 24th international conference on
intelligent user interfaces (pp. 1–11). New York, NY, USA: Association for Computing
Machinery, URL: https://doi.acm.org/10.1145/3301275.3302287.

lsafty, A., Riedl, M., & Biemann, C. (2018). Document-based recommender system for
job postings using dense representations. In Proceedings of the 2018 conference of the
North American chapter of the association for computational linguistics: human language
technologies, vol. 3 (industry papers) (pp. 216–224). New Orleans - Louisiana: Associ-
ation for Computational Linguistics, URL: https://www.aclweb.org/anthology/N18-
3027.

eng, S., Cong, G., An, B., & Chee, Y. M. (2017). POI2vec: Geographical latent
representation for predicting future visitors. AAAI 2017, (pp. 102–108). http:
//dx.doi.org/10.1609/aaai.v31i1.10500, Cited by: 159,

essahaye, F., Perez, L., Zhan, T., Zhang, R., Fossier, C., Markarian, R., Chiu, C.,
Zhan, J., Gewali, L., & Oh, P. (2019). T-recsys: A novel music recommendation
system using deep learning. In 2019 IEEE international conference on consumer
electronics (pp. 1–6). IEEE, http://dx.doi.org/10.1109/ICCE.2019.8662028.

u, L., & Ma, X. (2021). An improved recommendation method based on content
filtering and collaborative filtering. Complexity, 2021, http://dx.doi.org/10.1155/
2021/5589285.

unk, S. (2006). Netflix update: Try this at home.
hosh, S., Mundhe, M., Hernandez, K., & Sen, S. (1999). Voting for movies: The

anatomy of a recommender system. In Proceedings of the third annual conference on
autonomous agents (pp. 434–435). New York, NY, USA: Association for Computing
Machinery, http://dx.doi.org/10.1145/301136.301303.

lenski, M., & Weninger, T. (2017). Predicting user-interactions on reddit. In Proceedings
of the 2017 IEEE/ACM international conference on advances in social networks analysis
and mining 2017 (pp. 609–612). New York, NY, USA: Association for Computing
Machinery, http://dx.doi.org/10.1145/3110025.3120993.

rover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining (pp. 855–864). New York, NY, USA: Association for Computing
Machinery, http://dx.doi.org/10.1145/2939672.2939754.

undogdu, A. S., Sanghvi, A., & Harrigian, K. (2018). Recognizing film entities in
podcasts. Computing Research Repository (CoRR), http://dx.doi.org/10.48550/arXiv.
1809.08711.

amilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learn-
ing on large graphs. In Advances in neural information processing systems, vol.
30. Curran Associates, Inc., URL: https://proceedings.neurips.cc/paper/2017/file/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

ariri, N., Mobasher, B., & Burke, R. (2013). Query-driven context aware recommen-
dation. In Proceedings of the 7th ACM conference on recommender systems (pp. 9–16).
New York, NY, USA: Association for Computing Machinery, http://dx.doi.org/10.
1145/2507157.2507187.

ochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8), 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735.

u, M., Peng, Y., Huang, Z., Li, D., & Lv, Y. (2019). Open-domain targeted sentiment
analysis via span-based extraction and classification. In Proceedings of the 57th
annual meeting of the association for computational linguistics (pp. 537–546). Florence,
Italy: Association for Computational Linguistics, http://dx.doi.org/10.18653/v1/
P19-1051.

uang, J., Oosterhuis, H., de Rijke, M., & van Hoof, H. (2020). Keeping dataset
biases out of the simulation: A debiased simulator for reinforcement learning based
recommender systems. In Proceedings of the 14th ACM conference on recommender
systems (pp. 190–199). New York, NY, USA: Association for Computing Machinery,
http://dx.doi.org/10.1145/3383313.3412252.

anchevski, A., & Gievska, S. (2019). A study of different models for subreddit
recommendation based on user-community interaction. In ICT innovations 2019. big
data processing and mining (pp. 96–108). Cham: Springer International Publishing,
http://dx.doi.org/10.1007/978-3-030-33110-8_9.

urafsky, D., & Martin, J. H. (2009). Speech and language processing (2nd ed.). USA:
Prentice-Hall, Inc..

Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F.,
Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G.,
Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T.,
.... Kasneci, G. (2023). Chatgpt for good? On opportunities and challenges of large
language models for education. Learning and Individual Differences, 103, Article
102274. http://dx.doi.org/10.1016/j.lindif.2023.102274.

Koren, Y. (2008). Factorization meets the neighborhood: A multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 426–434). New York, NY, USA: Association
for Computing Machinery, http://dx.doi.org/10.1145/1401890.1401944.

http://dx.doi.org/10.1145/1055709.1055714
http://dx.doi.org/10.1145/1055709.1055714
http://dx.doi.org/10.1145/1055709.1055714
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1109/TKDE.2005.99
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb3
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb3
http://dx.doi.org/10.48550/arXiv.1408.0782
http://dx.doi.org/10.48550/arXiv.1408.0782
http://dx.doi.org/10.48550/arXiv.1408.0782
http://dx.doi.org/10.1109/MLSP.2016.7738886
http://dx.doi.org/10.1609/icwsm.v14i1.7347
http://dx.doi.org/10.1609/icwsm.v14i1.7347
http://dx.doi.org/10.1609/icwsm.v14i1.7347
http://dx.doi.org/10.18653/v1/2020.emnlp-main.636
http://dx.doi.org/10.18653/v1/2020.emnlp-main.636
http://dx.doi.org/10.18653/v1/2020.emnlp-main.636
http://dx.doi.org/10.1145/3109859.3109893
http://dx.doi.org/10.1145/3109859.3109893
http://dx.doi.org/10.1145/3109859.3109893
https://aclanthology.org/J92-4003
http://dx.doi.org/10.18653/v1/2020.coling-main.72
http://dx.doi.org/10.18653/v1/2020.coling-main.72
http://dx.doi.org/10.18653/v1/2020.coling-main.72
https://aclanthology.org/2020.coling-main.72
https://aclanthology.org/2020.coling-main.72
https://aclanthology.org/2020.coling-main.72
http://dx.doi.org/10.1145/3366424.3383300
http://dx.doi.org/10.1145/3366424.3383300
http://dx.doi.org/10.1145/3366424.3383300
http://dx.doi.org/10.48550/arXiv.2109.01758
https://aclanthology.org/W03-0423
http://dx.doi.org/10.1162/tacl_a_00104
http://dx.doi.org/10.1145/2939672.2939746
http://dx.doi.org/10.1145/2939672.2939746
http://dx.doi.org/10.1145/2939672.2939746
http://dx.doi.org/10.1142/S0218213007003540
http://dx.doi.org/10.1142/S0218213007003540
http://dx.doi.org/10.18653/v1/2020.acl-main.747
http://dx.doi.org/10.48550/arXiv.2205.08084
http://dx.doi.org/10.48550/arXiv.2205.08084
http://dx.doi.org/10.48550/arXiv.2205.08084
http://arxiv.org/abs/2205.08084
http://dx.doi.org/10.1007/978-0-387-85820-3_4
http://dx.doi.org/10.48550/arXiv.1810.04805
http://dx.doi.org/10.1016/j.eswa.2018.10.003
http://dx.doi.org/10.1145/3372923.3404818
https://doi.acm.org/10.1145/3301275.3302287
https://www.aclweb.org/anthology/N18-3027
https://www.aclweb.org/anthology/N18-3027
https://www.aclweb.org/anthology/N18-3027
http://dx.doi.org/10.1609/aaai.v31i1.10500
http://dx.doi.org/10.1609/aaai.v31i1.10500
http://dx.doi.org/10.1609/aaai.v31i1.10500
http://dx.doi.org/10.1109/ICCE.2019.8662028
http://dx.doi.org/10.1155/2021/5589285
http://dx.doi.org/10.1155/2021/5589285
http://dx.doi.org/10.1155/2021/5589285
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb29
http://dx.doi.org/10.1145/301136.301303
http://dx.doi.org/10.1145/3110025.3120993
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.48550/arXiv.1809.08711
http://dx.doi.org/10.48550/arXiv.1809.08711
http://dx.doi.org/10.48550/arXiv.1809.08711
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
http://dx.doi.org/10.1145/2507157.2507187
http://dx.doi.org/10.1145/2507157.2507187
http://dx.doi.org/10.1145/2507157.2507187
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.18653/v1/P19-1051
http://dx.doi.org/10.18653/v1/P19-1051
http://dx.doi.org/10.18653/v1/P19-1051
http://dx.doi.org/10.1145/3383313.3412252
http://dx.doi.org/10.1007/978-3-030-33110-8_9
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb40
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb40
http://dx.doi.org/10.1016/j.lindif.2023.102274
http://dx.doi.org/10.1145/1401890.1401944

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.

L

L

L

L

L

L

L

L

L

L

L

L

M

M

M

Kouki, P., Fountalis, I., Vasiloglou, N., Cui, X., Liberty, E., & Al Jadda, K. (2020). From
the lab to production: A case study of session-based recommendations in the home-
improvement domain. In Proceedings of the 14th ACM conference on recommender
systems (pp. 140–149). New York, NY, USA: Association for Computing Machinery,
http://dx.doi.org/10.1145/3383313.3412235.

ample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016).
Neural architectures for named entity recognition. In Proceedings of the 2016
conference of the North American chapter of the association for computational linguistics:
human language technologies (pp. 260–270). San Diego, California: Association for
Computational Linguistics, http://dx.doi.org/10.18653/v1/N16-1030.

Lamprecht, D., Geigl, F., Karas, T., Walk, S., Helic, D., & Strohmaier, M. (2015).
Improving recommender system navigability through diversification: A case study
of IMDb. In i-KNOW ’15, Proceedings of the 15th international conference on knowledge
technologies and data-driven business. New York, NY, USA: Association for Computing
Machinery, http://dx.doi.org/10.1145/2809563.2809603.

angevin, R., Lordon, R. J., Avrahami, T., Cowan, B. R., Hirsch, T., & Hsieh, G.
(2021). Heuristic evaluation of conversational agents. In Proceedings of the 2021 CHI
conference on human factors in computing systems. New York, NY, USA: Association
for Computing Machinery, http://dx.doi.org/10.1145/3411764.3445312.

e, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. In
Proceedings of machine learning research: vol. 32, Proceedings of the 31st international
conference on machine learning (no. 2), (pp. 1188–1196). Bejing, China: PMLR, URL:
https://proceedings.mlr.press/v32/le14.html.

evy, O., Goldberg, Y., & Dagan, I. (2015). Improving distributional similarity
with lessons learned from word embeddings. Transactions of the Association for
Computational Linguistics, 3, 211–225. http://dx.doi.org/10.1162/tacl_a_00134.

i, X., Bing, L., Zhang, W., & Lam, W. (2019). Exploiting BERT for end-to-end aspect-
based sentiment analysis. In Proceedings of the 5th workshop on noisy user-generated
text (pp. 34–41). Hong Kong, China: Association for Computational Linguistics,
http://dx.doi.org/10.18653/v1/D19-5505.

i, C., Gao, F., Bu, J., Xu, L., Chen, X., Gu, Y., Shao, Z., Zheng, Q., Zhang, N.,
Wang, Y., & Yu, Z. (2021). SentiPrompt: Sentiment knowledge enhanced prompt-
tuning for aspect-based sentiment analysis. Computing Research Repository (CoRR),
http://dx.doi.org/10.48550/arXiv.2109.08306.

i, H., Sanner, S., Luo, K., & Wu, G. (2020). A ranking optimization approach to
latent linear critiquing for conversational recommender systems. In Proceedings
of the 14th ACM conference on recommender systems (pp. 13–22). New York, NY,
USA: Association for Computing Machinery, http://dx.doi.org/10.1145/3383313.
3412240.

iang, D., Altosaar, J., Charlin, L., & Blei, D. M. (2016). Factorization meets the
item embedding: Regularizing matrix factorization with item co-occurrence. In
Proceedings of the 10th ACM conference on recommender systems (pp. 59–66). New
York, NY, USA: Association for Computing Machinery, http://dx.doi.org/10.1145/
2959100.2959182.

iu, S., Li, W., Wu, Y., Su, Q., & Sun, X. (2020). Jointly modeling aspect and sentiment
with dynamic heterogeneous graph neural networks. arXiv:2004.06427.

iu, J., Liu, C., Lv, R., Zhou, K., & Zhang, Y. (2023). Is ChatGPT a good recommender?
A preliminary study. http://dx.doi.org/10.48550/arXiv.2304.10149, arXiv:2304.
10149.

iu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT
pretraining approach. Computing Research Repository (CoRR), http://dx.doi.org/10.
48550/arXiv.1907.11692.

udewig, M., & Jannach, D. (2018). Evaluation of session-based recommendation
algorithms. User Modeling and User-Adapted Interaction, 28(4), 331–390. http://dx.
doi.org/10.1007/s11257-018-9209-6.

ak, H., Koprinska, I., & Poon, J. (2003). Intimate: a web-based movie recommender
using text categorization. In Proceedings IEEE/WIC international conference on web
intelligence (pp. 602–605). http://dx.doi.org/10.1109/WI.2003.1241277.

ansouri, A., Affendey, L., & Mamat, A. (2008). Named entity recognition approaches.
The International Journal of Computer Science, 8.

ihalcea, R., & Tarau, P. (2004). TextRank: Bringing order into text. In Proceedings
of the 2004 conference on empirical methods in natural language processing (pp.
404–411). Barcelona, Spain: Association for Computational Linguistics, URL: https:
//aclanthology.org/W04-3252.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. http://dx.doi.org/10.48550/arXiv.1301.3781, arXiv
preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems, vol. 26. Curran Associates, Inc., URL: https:
//proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-
Paper.pdf.

Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen, T. H., Sainz, O., Agirre, E.,
Heintz, I., & Roth, D. (2021). Recent advances in natural language processing via
large pre-trained language models: A survey. Computing Research Repository (CoRR),
http://dx.doi.org/10.48550/arXiv.2111.01243.

Mnih, A., & Hinton, G. E. (2008). A scalable hierarchical distributed lan-
guage model. In Advances in neural information processing systems, vol. 21.
Curran Associates, Inc., URL: https://proceedings.neurips.cc/paper/2008/file/
1e056d2b0ebd5c878c550da6ac5d3724-Paper.pdf.
20
Montazeralghaem, A., Allan, J., & Thomas, P. S. (2021). Large-scale interactive
conversational recommendation system using actor-critic framework. In Proceedings
of the 15th ACM conference on recommender systems (pp. 220–229). New York, NY,
USA: Association for Computing Machinery, http://dx.doi.org/10.1145/3460231.
3474271.

Musto, C., Martina, A. F. M., Iovine, A., de Gemmis, M., & Semeraro, G. (2022). Tell
me what you like: Introducing natural language preference elicitation strategies in
a virtual assistant for the movie domain. Preprint submitted to Expert Systems with
Applications, http://dx.doi.org/10.2139/ssrn.4140047, Available at SSRN 4140047.

Musto, C., Semeraro, G., De Gemmis, M., & Lops, P. (2015). Word embedding
techniques for content-based recommender systems: An empirical evaluation. Recsys
Posters, 1441.

Oku, K., Nakajima, S., Miyazaki, J., & Uemura, S. (2006). Context-aware SVM for
context-dependent information recommendation. In 7th international conference on
mobile data management (p. 109). http://dx.doi.org/10.1109/MDM.2006.56.

Okura, S., Tagami, Y., Ono, S., & Tajima, A. (2017). Embedding-based news recommen-
dation for millions of users. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining (pp. 1933–1942). New York, NY,
USA: Association for Computing Machinery, http://dx.doi.org/10.1145/3097983.
3098108.

Ozsoy, M. G. (2016). From word embeddings to item recommendation. Computing
Research Repository (CoRR), http://dx.doi.org/10.48550/arXiv.1601.01356.

Panchendrarajan, R., & Amaresan, A. (2019). Bidirectional LSTM-CRF for named entity
recognition.

Penha, G., & Hauff, C. (2020). What does BERT know about books, movies and music?
Probing BERT for conversational recommendation. In Proceedings of the 14th ACM
conference on recommender systems (pp. 388–397). New York, NY, USA: Association
for Computing Machinery, http://dx.doi.org/10.1145/3383313.3412249.

Pereira, J. A., Matuszyk, P., Krieter, S., Spiliopoulou, M., & Saake, G. (2018). Per-
sonalized recommender systems for product-line configuration processes. Computer
Languages, Systems & Structures, 54, 451–471. http://dx.doi.org/10.1016/j.cl.2018.
01.003.

Perny, P., & Zucker, J.-D. (2001). Preference-based search and machine learning for
collaborative filtering: the ‘‘film-conseil’’ movie recommender system. Information,
Interaction, Intelligence, 1(1), 9–48.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L.
(2018). Deep contextualized word representations. Computing Research Repository
(CoRR), http://dx.doi.org/10.48550/arXiv.1802.05365.

Polignano, M., Musto, C., de Gemmis, M., Lops, P., & Semeraro, G. (2021). Together is
better: Hybrid recommendations combining graph embeddings and contextualized
word representations. In Proceedings of the 15th ACM conference on recommender
systems (pp. 187–198). New York, NY, USA: Association for Computing Machinery,
http://dx.doi.org/10.1145/3460231.3474272.

Pradel, B., Usunier, N., & Gallinari, P. (2012). Ranking with non-random missing
ratings: Influence of popularity and positivity on evaluation metrics. In Proceedings
of the sixth ACM conference on recommender systems (pp. 147–154). New York, NY,
USA: Association for Computing Machinery, http://dx.doi.org/10.1145/2365952.
2365982.

Ramshaw, L. A., & Marcus, M. P. (1999). Text chunking using transformation-based
learning. In Natural language processing using very large corpora (pp. 157–176).
Dordrecht: Springer Netherlands, http://dx.doi.org/10.1007/978-94-017-2390-9_
10.

Ratcliff, J. W., & Metzener, D. E. (1988). Pattern-matching-the gestalt approach. Dr
Dobbs Journal, 13(7), 46.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens:
An open architecture for collaborative filtering of netnews. In Proceedings of the
1994 ACM conference on computer supported cooperative work (pp. 175–186). New
York, NY, USA: Association for Computing Machinery, http://dx.doi.org/10.1145/
192844.192905.

Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems
handbook. In Recommender systems handbook (pp. 1–35). Boston, MA: Springer US,
http://dx.doi.org/10.1007/978-0-387-85820-3_1.

Ritter, A., Clark, S., Mausam, & Etzioni, O. (2011). Named entity recognition in tweets:
An experimental study. In Proceedings of the conference on empirical methods in
natural language processing (pp. 1524–1534). USA: Association for Computational
Linguistics.

Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic keyword extraction
from individual documents. In Text mining (pp. 1–20). John Wiley & Sons, Ltd,
http://dx.doi.org/10.1002/9780470689646.ch1.

Sabir, A., Lafontaine, E., & Das, A. (2022). Hey alexa, who am I talking to?: Analyzing
users’ perception and awareness regarding third-party Alexa skills. In Proceedings
of the 2022 CHI conference on human factors in computing systems. New York, NY,
USA: Association for Computing Machinery, http://dx.doi.org/10.1145/3491102.
3517510.

Salton, G., & McGill, M. J. (1983). Information retrieval: an introduction. In Introduction
to modern information retrieval (pp. 1–23).

Schedl, M., Zamani, H., Chen, C.-W., Deldjoo, Y., & Elahi, M. (2018). Current challenges
and visions in music recommender systems research. International Journal of
Multimedia Information Retrieval, 7(2), 95–116. http://dx.doi.org/10.1007/s13735-
018-0154-2.

http://dx.doi.org/10.1145/3383313.3412235
http://dx.doi.org/10.18653/v1/N16-1030
http://dx.doi.org/10.1145/2809563.2809603
http://dx.doi.org/10.1145/3411764.3445312
https://proceedings.mlr.press/v32/le14.html
http://dx.doi.org/10.1162/tacl_a_00134
http://dx.doi.org/10.18653/v1/D19-5505
http://dx.doi.org/10.48550/arXiv.2109.08306
http://dx.doi.org/10.1145/3383313.3412240
http://dx.doi.org/10.1145/3383313.3412240
http://dx.doi.org/10.1145/3383313.3412240
http://dx.doi.org/10.1145/2959100.2959182
http://dx.doi.org/10.1145/2959100.2959182
http://dx.doi.org/10.1145/2959100.2959182
http://arxiv.org/abs/2004.06427
http://dx.doi.org/10.48550/arXiv.2304.10149
http://arxiv.org/abs/2304.10149
http://arxiv.org/abs/2304.10149
http://arxiv.org/abs/2304.10149
http://dx.doi.org/10.48550/arXiv.1907.11692
http://dx.doi.org/10.48550/arXiv.1907.11692
http://dx.doi.org/10.48550/arXiv.1907.11692
http://dx.doi.org/10.1007/s11257-018-9209-6
http://dx.doi.org/10.1007/s11257-018-9209-6
http://dx.doi.org/10.1007/s11257-018-9209-6
http://dx.doi.org/10.1109/WI.2003.1241277
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb58
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb58
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb58
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
http://dx.doi.org/10.48550/arXiv.1301.3781
http://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
http://dx.doi.org/10.48550/arXiv.2111.01243
https://proceedings.neurips.cc/paper/2008/file/1e056d2b0ebd5c878c550da6ac5d3724-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/1e056d2b0ebd5c878c550da6ac5d3724-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/1e056d2b0ebd5c878c550da6ac5d3724-Paper.pdf
http://dx.doi.org/10.1145/3460231.3474271
http://dx.doi.org/10.1145/3460231.3474271
http://dx.doi.org/10.1145/3460231.3474271
http://dx.doi.org/10.2139/ssrn.4140047
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb66
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb66
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb66
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb66
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb66
http://dx.doi.org/10.1109/MDM.2006.56
http://dx.doi.org/10.1145/3097983.3098108
http://dx.doi.org/10.1145/3097983.3098108
http://dx.doi.org/10.1145/3097983.3098108
http://dx.doi.org/10.48550/arXiv.1601.01356
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb70
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb70
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb70
http://dx.doi.org/10.1145/3383313.3412249
http://dx.doi.org/10.1016/j.cl.2018.01.003
http://dx.doi.org/10.1016/j.cl.2018.01.003
http://dx.doi.org/10.1016/j.cl.2018.01.003
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb73
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb73
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb73
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb73
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb73
http://dx.doi.org/10.48550/arXiv.1802.05365
http://dx.doi.org/10.1145/3460231.3474272
http://dx.doi.org/10.1145/2365952.2365982
http://dx.doi.org/10.1145/2365952.2365982
http://dx.doi.org/10.1145/2365952.2365982
http://dx.doi.org/10.1007/978-94-017-2390-9_10
http://dx.doi.org/10.1007/978-94-017-2390-9_10
http://dx.doi.org/10.1007/978-94-017-2390-9_10
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb78
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb78
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb78
http://dx.doi.org/10.1145/192844.192905
http://dx.doi.org/10.1145/192844.192905
http://dx.doi.org/10.1145/192844.192905
http://dx.doi.org/10.1007/978-0-387-85820-3_1
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb81
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb81
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb81
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb81
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb81
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb81
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb81
http://dx.doi.org/10.1002/9780470689646.ch1
http://dx.doi.org/10.1145/3491102.3517510
http://dx.doi.org/10.1145/3491102.3517510
http://dx.doi.org/10.1145/3491102.3517510
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb84
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb84
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb84
http://dx.doi.org/10.1007/s13735-018-0154-2
http://dx.doi.org/10.1007/s13735-018-0154-2
http://dx.doi.org/10.1007/s13735-018-0154-2

Expert Systems With Applications 236 (2024) 121268L. Eberhard et al.

S

Z

Setlur, V., & Tory, M. (2022). How do you converse with an analytical chatbot?
Revisiting gricean maxims for designing analytical conversational behavior. In
Proceedings of the 2022 CHI conference on human factors in computing systems. New
York, NY, USA: Association for Computing Machinery, http://dx.doi.org/10.1145/
3491102.3501972.

mith, B., & Linden, G. (2017). Two decades of recommender systems at Amazon.com.
IEEE Internet Computing, 21(3), 12–18. http://dx.doi.org/10.1109/MIC.2017.72.

de Souza Pereira Moreira, G., Rabhi, S., Lee, J. M., Ak, R., & Oldridge, E. (2021).
Transformers4Rec: Bridging the gap between NLP and sequential / session-based
recommendation. In Proceedings of the 15th ACM conference on recommender systems
(pp. 143–153). New York, NY, USA: Association for Computing Machinery, http:
//dx.doi.org/10.1145/3460231.3474255.

Stanescu, A., Nagar, S., & Caragea, D. (2013). A hybrid recommender system: User
profiling from keywords and ratings. In 2013 IEEE/WIC/ACM international joint
conferences on web intelligence (WI) and intelligent agent technologies, vol. 1 (pp.
73–80). http://dx.doi.org/10.1109/WI-IAT.2013.11.

Stiebellehner, S., Wang, J., & Yuan, S. (2018). Learning continuous user representations
through hybrid filtering with doc2vec. Computing Research Repository (CoRR), http:
//dx.doi.org/10.48550/arXiv.1801.00215.

Sutiono, A. P., & Hahn-Powell, G. (2022). Syntax-driven data augmentation for named
entity recognition. Computing Research Repository (CoRR), http://dx.doi.org/10.
48550/arXiv.2208.06957.

Szomszor, M., Cattuto, C., Alani, H., O’Hara, K., Baldassarri, A., Loreto, V., & Serve-
dio, V. D. (2007). Folksonomies, the semantic web, and movie recommendation.
In 4th European semantic web conference, bridging the gap between semantic web and
web 2.0 (06/06/07). URL: https://eprints.soton.ac.uk/264007/.

Tao, J., Brayton, K. A., & Broschat, S. L. (2021). Automated confirmation of protein
annotation using NLP and the UniProtKB database. Applied Sciences, 11(1), http:
//dx.doi.org/10.3390/app11010024.

Terveen, L., & Hill, W. (2001). Beyond recommender systems: Helping people help each
other. HCI in the New Millennium, 1(2001), 487–509.

Truşcǎ, M. M., Wassenberg, D., Frasincar, F., & Dekker, R. (2020). A hybrid approach
for aspect-based sentiment analysis using deep contextual word embeddings and hi-
erarchical attention. In Web engineering (pp. 365–380). Cham: Springer International
Publishing, http://dx.doi.org/10.1007/978-3-030-50578-3_25.
21
Vazan, M., & Razmara, J. (2021). Jointly modeling aspect and polarity for aspect-based
sentiment analysis in Persian reviews. arXiv:2109.07680.

Villegas, N. M., Sánchez, C., Díaz-Cely, J., & Tamura, G. (2018). Characterizing context-
aware recommender systems: A systematic literature review. Knowledge-Based
Systems, 140, 173–200. http://dx.doi.org/10.1016/j.knosys.2017.11.003.

Wang, S., Cao, L., Wang, Y., Sheng, Q. Z., Orgun, M. A., & Lian, D. (2021). A
survey on session-based recommender systems. ACM Computing Surveys, 54(7),
http://dx.doi.org/10.1145/3465401.

Wang, H., Zhang, F., Zhang, M., Leskovec, J., Zhao, M., Li, W., & Wang, Z. (2019).
Knowledge-aware graph neural networks with label smoothness regularization
for recommender systems. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining (pp. 968–977). New York, NY,
USA: Association for Computing Machinery, http://dx.doi.org/10.1145/3292500.
3330836.

Wölbitsch, M., Walk, S., Goller, M., & Helic, D. (2019). Beggars can’t be choosers:
Augmenting sparse data for embedding-based product recommendations in retail
stores. In Proceedings of the 27th ACM conference on user modeling, adaptation and
personalization (pp. 104–112). New York, NY, USA: Association for Computing
Machinery, http://dx.doi.org/10.1145/3320435.3320454.

Wu, Y., Macdonald, C., & Ounis, I. (2021). Partially observable reinforcement learning
for dialog-based interactive recommendation. In Proceedings of the 15th ACM
conference on recommender systems (pp. 241–251). New York, NY, USA: Association
for Computing Machinery, http://dx.doi.org/10.1145/3460231.3474256.

Zeng, Z., Ma, J., Chen, M., & Li, X. (2019). Joint learning for aspect category detection
and sentiment analysis in Chinese reviews. In Q. Zhang, X. Liao, & Z. Ren (Eds.),
Information retrieval (pp. 108–120). Cham: Springer International Publishing.

Zhang, Y., Ding, H., Shui, Z., Ma, Y., Zou, J., Deoras, A., & Wang, H. (2021).
Language models as recommender systems: Evaluations and limitations.
In NeurIPS 2021 workshop on I (still) can’t believe it’s not better. URL:
https://www.amazon.science/publications/language-models-as-recommender-
systems-evaluations-and-limitations.

itouni, I. (2014). Natural language processing of semitic languages. Springer, http://dx.
doi.org/10.1007/978-3-642-45358-8.

http://dx.doi.org/10.1145/3491102.3501972
http://dx.doi.org/10.1145/3491102.3501972
http://dx.doi.org/10.1145/3491102.3501972
http://dx.doi.org/10.1109/MIC.2017.72
http://dx.doi.org/10.1145/3460231.3474255
http://dx.doi.org/10.1145/3460231.3474255
http://dx.doi.org/10.1145/3460231.3474255
http://dx.doi.org/10.1109/WI-IAT.2013.11
http://dx.doi.org/10.48550/arXiv.1801.00215
http://dx.doi.org/10.48550/arXiv.1801.00215
http://dx.doi.org/10.48550/arXiv.1801.00215
http://dx.doi.org/10.48550/arXiv.2208.06957
http://dx.doi.org/10.48550/arXiv.2208.06957
http://dx.doi.org/10.48550/arXiv.2208.06957
https://eprints.soton.ac.uk/264007/
http://dx.doi.org/10.3390/app11010024
http://dx.doi.org/10.3390/app11010024
http://dx.doi.org/10.3390/app11010024
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb94
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb94
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb94
http://dx.doi.org/10.1007/978-3-030-50578-3_25
http://arxiv.org/abs/2109.07680
http://dx.doi.org/10.1016/j.knosys.2017.11.003
http://dx.doi.org/10.1145/3465401
http://dx.doi.org/10.1145/3292500.3330836
http://dx.doi.org/10.1145/3292500.3330836
http://dx.doi.org/10.1145/3292500.3330836
http://dx.doi.org/10.1145/3320435.3320454
http://dx.doi.org/10.1145/3460231.3474256
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb102
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb102
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb102
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb102
http://refhub.elsevier.com/S0957-4174(23)01770-0/sb102
https://www.amazon.science/publications/language-models-as-recommender-systems-evaluations-and-limitations
https://www.amazon.science/publications/language-models-as-recommender-systems-evaluations-and-limitations
https://www.amazon.science/publications/language-models-as-recommender-systems-evaluations-and-limitations
http://dx.doi.org/10.1007/978-3-642-45358-8
http://dx.doi.org/10.1007/978-3-642-45358-8
http://dx.doi.org/10.1007/978-3-642-45358-8

	Computing recommendations from free-form text
	Introduction
	Related Work
	Recommender Systems
	Context-Aware Recommender Systems
	Narrative-Driven Recommender Systems
	Annotating Free-Form Text

	Materials & Experiments
	Automatic Annotations
	Results

	Movie Recommendations
	Results

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. Model Token Level Evaluation
	Appendix B. Model Architectures
	Appendix C. Detailed Recommender Experiment Results
	References

