
Evaluating Narrative-Driven Movie Recommendations
on Reddit

Lukas Eberhard
Graz University of Technology

Graz, Austria
lukas.eberhard@tugraz.at

Simon Walk
Detego

Graz, Austria
s.walk@detego.com

Lisa Posch
GESIS & Graz University of

Technology
Cologne, Germany

lisa.posch@gesis.org
Denis Helic

Graz University of Technology
Graz, Austria

dhelic@tugraz.at

ABSTRACT
Recommender systems have become omni-present tools that
are used by a wide variety of users in everyday life tasks, such
as finding products in Web stores or online movie streaming
portals. However, in situations where users already have an
idea of what they are looking for (e.g., ‘The Lord of the Rings’,
but in space with a dark vibe), most traditional recommender
algorithms struggle to adequately address such a priori defined
requirements. Therefore, users have built dedicated discussion
boards to ask peers for suggestions, which ideally fulfill the
stated requirements. In this paper, we set out to determine
the utility of well-established recommender algorithms for
calculating recommendations when provided with such a nar-
rative. To that end, we first crowdsource a reference evaluation
dataset from human movie suggestions. We use this dataset
to evaluate the potential of five recommendation algorithms
for incorporating such a narrative into their recommendations.
Further, we make the dataset available for other researchers
to advance the state of research in the field of narrative-driven
recommendations. Finally, we use our evaluation dataset to
improve not only our algorithmic recommendations, but also
existing empirical recommendations of IMDb. Our findings
suggest that the implemented recommender algorithms yield
vastly different suggestions than humans when presented with
the same a priori requirements. However, with carefully config-
ured post-filtering techniques, we can outperform the baseline
by up to 100%. This represents an important first step towards
more refined algorithmic narrative-driven recommendations.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous; See http://acm.org/about/class/1998/ for the
full list of ACM classifiers. This section is required.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI’16, May 07–12, 2016, San Jose, CA, USA

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 123-4567-24-567/08/06. . . $15.00

DOI: http://dx.doi.org/10.475/123_4

Author Keywords
Narrative-driven recommender, Collaborative filtering,
Evaluation

INTRODUCTION
The practical applications of recommender systems are man-
ifold. In general, they are tools that help users to find and
discover items of interest in large collections, such as books,
movies, or people. In a common collaborative filtering sce-
nario, a recommender system makes use of a user’s history
and predicts new items that user is likely to read, watch, or
connect to.

Problem. Often, users already have vague to specific ideas
about the desired entities they want to be recommended. More
precisely, users often seek recommendations that fit arbitrary
criteria, such as movies that evoke certain emotions or have
a surprising ending, instead of obtaining suggestions purely
based on their (and other users’) histories of interactions within
a given system. These criteria represent the narrative of a
recommendation request. Recommendations generated by
incorporating such a narrative are referred to as narrative-
driven recommendations [8] and also build the foundation for
conversation-based recommendation approaches used in chat-
and voice-bots. Due to the lack of automated recommender
systems that can accurately calculate such recommendations,
users have built various discussion boards on the Web to ask
peers for suggestions. For example, as of March 2017, there
were 190,000 discussion threads with nearly 25,000 threads
containing requests with a narrative for interesting books on
the social cataloging website LibraryThing1 [8]. Also, there
are several subreddits on reddit.com, where users can ask for,
for example, video game, movie, or board game suggestions.
Requests for movie recommendations can look as follows:

“[...] Movies with the genre ‘Crime’ [...] like ‘Nightcrawler’
and ‘Prisoners’ [...] And it is great if there is any form of plot
twists”2. The (free-form) narrative of such requests defines
several different elements, such as positively or negatively
associated movies (i.e., Nightcrawler, Prisoners), preferred as
well as unwanted genres (i.e., Crime), and specific keywords

1https://www.librarything.com
2https://www.reddit.com/r/MovieSuggestions/comments/3fvycr

http://acm.org/about/class/1998/
http://dx.doi.org/10.475/123_4
https://www.librarything.com
https://www.reddit.com/r/MovieSuggestions/comments/3fvycr

that define desired or undesired attributes/keywords of the
movie (i.e., plot twists) [8].

Approach. In this paper, we systematically analyze the suit-
ability of five standard recommender algorithms for supporting
such a narrative in recommender systems. For our evaluation,
we compare human suggestions for requests that provide a
narrative with purely algorithmic recommendations.

To that end, we first compile an evaluation dataset by collecting
and parsing narrative requirements from users of the subred-
dit r/MovieSuggestions3. We extract requirements from the
unstructured text of submissions and comments with the help
of crowdworkers and make our dataset available online4 for
future research. Next, we implement a recommender frame-
work based on ratings, reviews and textual information of
movies available on the Internet Movie Database5 (IMDb).
We calculate recommendations using the following five algo-
rithms for our analysis: item-based collaborative filtering (CF),
matrix factorization (MF), a content-based filtering approach
based on TF-IDF similarities (TF-IDF), document-level em-
beddings (Doc2Vec), and a network-based approach (NW). In
addition, we extract movie suggestions generated by IMDb,
which we use as an empirical baseline (IMDb baseline). We
apply post-filtering and re-ranking strategies using metadata
from IMDb to refine the computed recommendations. Finally,
we evaluate the five recommender approaches by measuring
the overlap between their recommendations and the sugges-
tions from users in our evaluation dataset from reddit. Our
initial results suggest that traditional recommender algorithms
exhibit great potential for improvement when presented with
a narrative, as they lack the proper means to include a priori
specified requirements in the recommendation process. Fur-
ther, we demonstrate that we can improve all recommendation
approaches (including existing empirical IMDb recommen-
dations) by applying post-filtering and re-ranking strategies
using metadata available in the narrative of the initial requests
on reddit.

Contributions. With our analyses, we make the following
contributions. First, we publish a reference dataset, which
enables researchers to conduct independent analyses, advanc-
ing the state of research in the context of narrative-driven
recommendations. Second, we evaluate the performance of
five well-studied recommender approaches on our reddit eval-
uation dataset, containing a total of 1,480 recommendation
requests that provide a narrative. Third, we demonstrate how
to improve narrative-driven recommendations by introducing
post-filtering and re-ranking techniques and analyze their im-
portance for each of our five implemented recommendation
approaches.

RELATED WORK
Traditional Recommender Systems. There exists a vast va-
riety of studies about recommender systems and algorithms
(e.g., [3, 4, 5, 8, 10, 11, 14, 15, 18, 20, 21, 22, 27, 34]). How-
ever, we still only have limited insights into the quality and

3https://www.reddit.com/r/MovieSuggestions
4AnonymizedURL
5https://www.imdb.com

suitability of traditional recommender algorithms for calculat-
ing narrative-driven recommendations. Typically, traditional
research in recommender systems focuses on algorithmic ad-
vantages in common scenarios, such as applying users’ his-
tories and profiles to compute recommendations [11, 14, 21,
27].

Context-Aware Recommender Systems. To compute rec-
ommendations that are well suited to the current needs of a
user, context-aware recommender systems use contextual in-
formation, such as the time of the day or the current location
or interests of the user, besides user profiles and histories [15].
In a context-driven environment, Adomavicius et al. [4] intro-
duced REQUEST, which is a query language for customizing
recommendations based on users’ personalized recommenda-
tion needs. Hariri et al. [15] proposed a query-driven context-
aware recommender system that considers user profiles, item
representations, and contextual information, such as interests
or needs of a user in a specific situation.

A context-aware support vector machine for application in a
context-dependent recommender system was proposed by Oku
et al. [24]. The authors found that for information recommen-
dation it is important to consider the situations or conditions
which influence the users’ decisions (e.g., time of day, weather,
physical condition).

In the study of Adomavicius et al. [1], the authors presented
a multidimensional recommendation model that is based on
additional contextual information, such as profiles and aggre-
gation hierarchies. They evaluated their approach on a movie
recommender by exploiting contextual information, such as
when a movie was seen, where, and with whom. They em-
pirically demonstrated that this contextual information can
improve the recommendations.

Basu et al. [5] conducted a study on IMDb data, in which they
proposed a recommender approach that exploits both user rat-
ings and content information using collaborative, content, and
hybrid features. Lamprecht et al. [18] analyzed how IMDb
recommendation networks support alternative information re-
trieval strategies, such as browsing. The authors showed that
current recommendation networks are poorly navigable and
require further improvements. This shows potential for pro-
viding context-aware recommender systems that involve the
current needs of a user without the need of clicking through
poorly navigable recommendation networks until finding a
more or less fitting movie.

Adomavicius and Tuzhilin [3] argued that relevant contex-
tual information is important when providing recommenda-
tions. Such contextual information can be obtained explicitly
(i.e., users provide additional information) or implicitly (i.e.,
system implies the context automatically from the given re-
quirements). To that end, the authors introduced pre- and
post-filtering techniques for capturing relevant context during
the recommendation process. They used these methods for
selecting a relevant set of data and for filtering out irrelevant
recommendations or adjusting the ranking of the obtained rec-
ommendation list based on a given context. They discussed
the notion of context and how it can be modeled, and con-

https://www.reddit.com/r/MovieSuggestions
AnonymizedURL
https://www.imdb.com

ducted an empirical analysis using movie data regarding only
the combination of several pre-filters. In this paper, we follow
up on their ideas.

In contrast to the study of Panniello et al. [25] that constitutes
a first step towards the comparison of pre- and post-filtering
using just one contextual variable for each applied dataset, we
introduce and combine several post-filters and evaluate their
utility in the context of narrative-driven movie recommenda-
tions.

Narrative-Driven Recommender Systems. Bogers and
Koolen [8] presented a specific context-aware recommenda-
tion scenario called narrative-driven recommendation. In such
a scenario recommendations are computed based on past trans-
actions of users, and a narrative description of the current
needs and interests of users. Narrative-driven recommenda-
tions are related to conversational-based recommender sys-
tems, where users ask for suggestions in a community and
other users then come up with suggestions and possible expla-
nations for their choices [10, 20, 22].

Bogers [7] analyzed the movie discussion threads from the
IMDb message boards that contain requests for movies to
watch. The author found that content (e.g., movie description),
different types of metadata (e.g., genre, language, release year),
and searching for a movie by describing its content (e.g., in
cases where users forgot the movie title) are important for
movie selection practices.

In contrast to previous work, we present the first in-depth
analysis and evaluation of recommender algorithms to support
narratives for the computation of recommendations.

REDDIT NARRATIVES EVALUATION DATASET
On r/MovieSuggestions, users ask other users for movie sug-
gestions by describing, in natural language, what they are look-
ing for. For example, typical posts include questions such as

“[...] Really dark, slow paced movies with minimal story, but
incredible atmosphere, kinda like ‘Drive’ (2011), ‘The Rover’
(2014), or ‘No Country for Old Men’ (2007)? [...]”6. The nar-
rative of this example includes references to three “positively
associated” movies (i.e., Drive, The Rover, No Country for
Old Men) and several keywords that define the gist of the plot
(i.e., incredible atmosphere, dark, slow paced, minimal story).
As these requests are written in free-form text, the amount of
information that can be leveraged for calculating recommen-
dations varies. For example, users sometimes include detailed
lists and descriptions of movies that they previously did (or did
not) enjoy in their requests. Other times, only a single movie is
referenced. Further, users frequently provide keywords in the
narrative, which should apply to the suggestions (e.g., “[...]
Movies that will make me want to cry [...] like ‘Extremely
Loud and Incredibly Close’ ”7 with the keyword cry and one
desired movie, or “[...] Movies that take place primarily in
one room or building. [...] Examples: Exam, Circle, Hateful
Eight, Die Hard [...]”8 including the keywords one room or
building and some desired movies). Other users then suggest
6https://www.reddit.com/r/MovieSuggestions/comments/3kjrus
7https://www.reddit.com/r/MovieSuggestions/comments/11ycep
8https://www.reddit.com/r/MovieSuggestions/comments/4va9p8

appropriate movies by writing comments to the original post.
Note that recommendations on r/MovieSuggestions are usu-
ally generated only considering the information provided in
each submission, ignoring previous interactions or requests
of users, limiting the amount of available information (see
Table 1 for a more detailed characterization of our dataset).

Requests with a Narrative. To compile a dataset suitable for
the evaluation of narrative-driven recommendations, we ex-
tracted all submissions from r/MovieSuggestions that (i) were
posted between August 14, 2011 and August 1, 20179, (ii)
had received at least ten comments, and (iii) had a score (i.e.,
the sum of up- and down-votes) greater than zero (3,640 of
23,484 submissions after filtering). Additionally, we extracted
all comments to these submissions that had a score greater than
zero, which we used as indicator for good recommendations
(24,851 of 201,298 comments after filtering). For the com-
pilation of the dataset, we asked crowdworkers to match the
movies, genres, actors and other keywords mentioned in the
reddit narratives to their corresponding entries on IMDb. The
IMDb website provides a wide variety of information about
movies and TV shows, such as genres, descriptions, trailers,
plot summaries, as well as details about the cast, producers,

9The dump is available at https://files.pushshift.io/reddit [6]

Table 1: Reddit Evaluation Dataset Characteristics. This table
lists the statistics of our reference dataset, which we compiled
using data from r/MovieSuggestions and crowdworkers on
Crowdflower to extract structured data from the unstructured
text of the submissions and comments.

#Submissions 1,480
Average Submission Score 11.78

Movies in Submissions 5,521
Unique Movies in Submissions 1,908
Submissions with Desired Movies 1,480
Submissions with Undesired Movies 75

Keywords in Submissions 4,492
Unique Keywords in Submissions 1,878
Submissions with Desired Keywords 1,198
Submissions with Undesired Keywords 153

Genres in Submissions 762
Unique Genres in Submissions 26
Submissions with Desired Genres 491
Submissions with Undesired Genres 61

Actors in Submissions 100
Unique Actors in Submissions 79
Submissions with Desired Actors 75
Submissions with Undesired Actors 6
#Comments 21,032
Average Comment Score 2.88
Movie Suggestions in Comments 43,402
Unique Movie Suggestions in Comments 6,071
Average # Movie Suggestions per Submission 29.33
Average # Movie Suggestions per Comment 2.48

https://www.reddit.com/r/MovieSuggestions/comments/3kjrus
https://www.reddit.com/r/MovieSuggestions/comments/11ycep
https://www.reddit.com/r/MovieSuggestions/comments/4va9p8
https://files.pushshift.io/reddit

and writers. In February 2017 the publicly available dataset10

included information about 4.1 million titles and 7.7 million
people.

Crowdsourcing Requests and Suggestions. To obtain a
structured set of user requests and suggestions, we asked
crowdworkers to annotate the unstructured text of the pre-
viously extracted submissions and comments from r/Movie-
Suggestions after filtering (see Table 1 for more details). To
that end, we designed four micro tasks on the crowdsourcing
platform CrowdFlower (now Figure Eight).11 First, in the
SUBMISSIONS task, we asked crowdworkers to identify all
movie titles in each submission. Second, in the SENTIMENT
task we asked crowdworkers to specify the sentiment of the
user with respect to a movie mentioned in a submission (i.e.,
positive or negative association to the requested suggestions).
We defined positively associated movies as movies that users
liked or where they stated that they were looking for movies
similar to these. Analogously, we defined negatively associ-
ated movies as movies that users disliked or where they stated
that they were not looking for similar movies. Third, in the
KEYWORDS task we asked crowdworkers to identify additional
information about the user’s preferences in each submission’s
text (i.e., keywords). To extract these keywords, we provided
the crowdworkers with a list of keyword types containing, for
example, genres, movie settings, and events.12 We asked the
crowdworkers to identify positively associated keywords (i.e.,
keywords which should apply to the recommendations) and
negatively associated keywords (i.e., keywords which should
not apply to the recommendations). Finally, in the COMMENTS
task, crowdworkers identified all movie titles in the comments
to each submission.

A minimum of three separate crowdworkers worked on each
submission in the SUBMISSIONS task. Where there was high
disagreement among the workers, we requested judgements
from two additional workers. Three workers worked on
each movie in the SENTIMENT task and each comment in the
COMMENTS task. In the KEYWORDS task, five distinct workers
extracted keywords from each submission. We ensured the
quality of the crowdworkers’ output by requiring an entry-quiz
for each task. Additionally, we continuously assessed workers
via test questions.

Post-Processing. To obtain a well-curated dataset for the train-
ing and evaluation of narrative-driven recommendations, we
carried out several manual and semi-automatic post-processing
steps.

First, we manually reviewed all submissions from the SUBMIS-
SIONS task and all comments from the COMMENTS task that
did not have the crowdworkers’ full agreement on movie titles.
The crowdworkers fully agreed on the movie titles in 1,205
submissions and 16,893 comments, and they disagreed on
titles in 457 submissions and 7,958 comments, which we

10https://www.imdb.com/interfaces
11https://www.figure-eight.com
12The full list of keyword types included genres, actors, movie direc-
tors, movie characters, movie producers, movie production compa-
nies, events or special occasions, movie settings, and other movie
characteristics.

then manually reviewed. During this step, we also removed
submissions and comments without movie titles.

Second, we aggregated the answers from the SENTIMENT and
KEYWORDS tasks. In the SENTIMENT task we applied a majority
vote whereas in the KEYWORDS task we first split the keyword
strings provided by the workers into single keywords. Then,
we retained all keywords identified by at least two out of the
five workers.

Third, we automatically and unambiguously matched 1,298
movie titles from the SUBMISSIONS and 5,695 movie titles
from the COMMENTS task to movie titles from IMDb. We
then manually reviewed all movie titles that could not be
automatically mapped to IMDb. In cases where more than
one (or no) movie existed with the exact same movie title,
we matched the movie using contextual information of the
submission and the comments. In cases where we did not
have sufficient information to unambiguously map movies, we
removed them from our reference dataset.

Fourth, we automatically identified all common movie genres
and actors in the keywords by matching them to the 25 genres
and 294,533 actors available in our IMDb data.

Finally, we removed all movies from the submissions and
comments that are not present in our IMDb data. Further,
we removed submissions that did not contain any positively
associated movie and that did not receive at least ten unique
movie suggestions in the comments. After the last prepro-
cessing step, our reference dataset13 consists of 1,480 movie-
recommendation requests and 43,402 corresponding sugges-
tions, as noted in Table 1.

EXPERIMENTAL SETUP
Our recommendation framework (see Figure 1) (i) uses one
or more movies as input data, (ii) implements five different
recommender algorithms to compute a candidate set of rec-
ommendations, and (iii) applies several post-filtering and re-
ranking strategies, based on metadata from IMDb to calculate
a final list of (top ten) recommendations.

To assess the importance of narratives for the calculation of
recommendations we further calculate an alternative final rec-
ommendation list by applying the structured input (in the form
of e.g., actors and keywords) from a given reddit narrative in
the post-filtering and re-ranking step.

Finally, we evaluate both lists by comparing them to hu-
man suggestions from our reddit evaluation dataset (see Sec-
tion Reddit Narratives Evaluation Dataset).

Hyperparameter Optimization. To analyze if and to what
extent traditional recommender approaches can support nar-
ratives we aim at making as few assumptions as possible and
take a data-driven approach. Thus, we conduct an extensive
cross-validation over various configurations of the parameters
of the algorithms (see framework components highlighted in

13Note that on our website AnonymizedURL, we also provide neces-
sary information about the mapping of genres and actors, and an
extended version of our dataset without thresholds for the number of
suggestions or the number of positively mentioned movies.

https://www.imdb.com/interfaces
https://www.figure-eight.com
AnonymizedURL

Recommender Framework
Post-Filtering & Re-Ranking Strategies

Input

Movie(s)

Output

Recommender System

Reddit Evaluation Dataset

Hyperparameter Optimization

H
yp

er
pa

ra
m

et
er

O
pt

im
iz

at
io

n

Hyperparameter Optimization

H
yp

er
pa

ra
m

et
er

O
pt

im
iz

at
io

n

Movie(s)

Optional
Actor(s)
Genre(s)
Keyword(s)
Year(s)

Mandatory

H
yp

er
pa

ra
m

et
er

O
pt

im
iz

at
io

n

IMDb Data

Hyperparameter Optimization

IMDb Data Reddit Narratives

Recommendation Request

Reddit Evaluation Dataset
Recommendation Request

Powered By Visual Paradigm Community Edition

Figure 1: Experimental Setup. The recommender framework accepts several input parameters (see Input), extracted from the
narrative of a recommendation request (e.g., reddit submissions). We distinguish between requests that only provide information
about desired movies (see Compute Recs. with IMDb Data) and requests that include more detailed information from their
narratives (see Compute Recs. with IMDb Data and reddit Narratives). The input parameters are then fed into the implemented
recommender algorithms (see Recommender System), which calculate a first list of candidate recommendations. We then apply
post-filters (see Post-Filtering & Re-Ranking Strategies) based on IMDb Metadata, or IMDb Metadata and reddit narratives, to
provide a re-ranked list of recommendations (see Output), which better reflects the requirements defined in the narrative of the
recommendation request. For all parts that are highlighted in orange (see Hyperparameter Optimization), we conduct an extensive
grid search over relevant parameter configurations to find the optimal parameter settings.

orange in Figure 1). Specifically, we optimize (i) hyperpa-
rameters for the algorithms, such as similarity measures or
regularization parameters, (ii) the lengths of the initial and
the final recommendation lists, and (iii) hyperparameters of
the post-filtering and re-ranking mechanisms, such as overlap
measures or functional forms for various scores. We discuss
the optimal parameter configurations that we obtain along with
introducing a given framework component.

IMDb Movies & Ratings. To implement the recommender
algorithms we use data from IMDb. Note that training of
recommender algorithms directly on our reddit evaluation
dataset is not viable due to the sparsity of data. We leave this
option open for future work when more data is available.

In addition to the publicly available IMDb dataset, we collect
user reviews and individual ratings for all movies on IMDb.
For our experiments, we only consider movies and discard all
other types available on IMDb, such as TV series or single TV
episodes. To minimize noise and to allow for fair comparisons
between the different approaches, we only keep movies that
have (i) more than 1,000 user ratings, (ii) at least one user
review, (iii) a movie description, and (iv) at least one person
in the cast. In contrast, we do not remove users with small
numbers of ratings, as this preprocessing step does not im-
prove our results. We obtain the rating thresholds for movies
(1,000) and users (no limit) via grid search.14 For more details
see Table 2. Further, we compute centered ratings [12, 29]
by removing user and item bias which improves the overall
performance of all implemented recommender approaches.

Recommender Strategies
We generate recommendations by computing similarities be-
tween an input movie and all other movies available in our

14We perform the grid search over 0 to 10,000 movie ratings in in-
crements of 500, as well as 0 to 500 user ratings with increments of
10.

IMDb dataset. Each recommender algorithm determines how
and with which data we calculate similarity. As similarity
measures we use cosine similarity and an inverse of Euclidean
distance and select the best performing measure via cross-
validation. In cases where we have more than one input movie
we aggregate similarity values. Hence, for each movie in our
IMDb data, we add all similarities for all positively associated
input movies. Our cross-validation yields better results when

Table 2: IMDb Dataset Characteristics. This table describes
the features of the dataset that we used for computing the rec-
ommendations of our implemented recommender algorithms.

#Movies 11,578

#Ratings 144,021,151
Average #Ratings per Movie ≈ 12,439.21
#Users with Ratings 1,144,136
Average #Ratings per User ≈ 125.88

#Reviews 1,880,837
Average #Reviews per Movie ≈ 162.45
#Users with Reviews 598,247
Average #Reviews per User ≈ 3.14

#Credits 667,279
#People in Cast & Crew 322,881
#Actors 294,533
Average #Actors per Movie ≈ 25.44
Average #Movies per Actor ≈ 2.27

#Genres 32,767
#Unique Genres 25
Average #Genres per Movie ≈ 2.83

#Plot Keywords 1,124,510
#Unique Plot Keywords 89,003
Average #Plot Keywords per Movie ≈ 97.12

we do not subtract negative input movies for the aggregation of
similarity values. We call the aggregated similarities algorith-
mic score. Thus, the output of each approach is a ranked list of
candidate movies with their corresponding algorithmic scores.
We conduct experiments with the following five approaches:

Item-Based Collaborative Filtering. This approach finds
similar movies to the movies that a user liked [33]. Thus, we
use the IMDb user-ratings vectors of two movies to compute
their similarity [33]. The best performing similarity measure
for this approach is cosine similarity.

Matrix Factorization. This approach is a well-established
method that approximates a ratings matrix with the product
of two matrices, one connecting users to factors representing
their preferences, and another connecting movies to factors
representing their properties [17, 26, 30, 31]. In this paper, we
factorize the IMDb user-ratings matrix in a standard manner
by minimizing a regularized squared error with a stochastic
gradient descent [13]. We then use cosine similarity (deter-
mined via hyperparameter optimization) to compute similarity
between the obtained movie factors.15

Content-Based Filtering with TF-IDF. We use this approach
to find similar movies by calculating similarity between
movies using their descriptions and user reviews [2]. Hence,
we compute the term frequency–inverse document frequency
score [32] of terms in the description and user reviews for
each movie. To compute the similarity between movies we
use normalized TF-IDF vectors and the reciprocal of Euclidean
distance (determined via hyperparameter optimization). We
receive the best results with unigrams and bigrams, no cut-off
threshold for less frequent terms, and with a maximum of 500
features for the TF-IDF vectors.16

Document-Level Embeddings with doc2vec. Similar to the
TF-IDF approach, we use movie descriptions and reviews
as basis for this approach. doc2vec was first proposed by
Le and Mikolov [19] and is an enhancement of word2vec
[23], extending the learning of embeddings from words to
documents. We use doc2vec to generate a document vector
for each movie and use these vectors to compute similarities
between movies. We obtain the best results with a feature
vector dimensionality of 500 and cosine similarity.17

Network-Based Recommendations. We use this approach
to find movies with similar casts and crews by creating a
bipartite graph between movies and people involved in those
movies. Specifically, we connect each movie to all cast and
crew members including actors, cinematographers, composers,

15We have tested different numbers of factors ranging from 100 to
1,000 in steps of 100, learning rates between 0 and 0.1 in steps of
0.001, and regularization parameters from 0 to 0.1 in steps of 0.01.
We obtain the best results for MF with 500 factors, a learning rate of
0.002, and 0.02 as regularization parameter.

16To obtain this configuration we conducted a grid search experiment
over different n-grams [9] (i.e., n = 1,2,3), several cut-off values for
terms with a low document frequency from 0 to 0.1 in increments of
0.001, and different numbers of TF-IDF features ranging from 0 to
1,000 in steps of 100.

17To obtain this configuration we conducted a grid search experiment
with different similarity measures, and different feature vector sizes
ranging from 0 to 1,000 in steps of 100.

costume designers, directors, editors, producers, production
designers, special effect companies, and writers. We calculate
similarity between movies by counting common neighbors in
the bipartite graph [16].

IMDb Baseline. We collect all movie suggestions on IMDb18

for each movie in our dataset to determine if and to what ex-
tent existing (empirical) recommender systems are suitable
to address a narrative. IMDb provides a maximum of twelve
recommendations per movie. We use these recommendations
for all (desired) input movies in the narrative of each submis-
sion. Note that IMDb does not provide any ranks or numerical
values quantifying the quality of each recommendation.

Post-Filtering & Re-Ranking
We further refine the algorithmic recommendations by defining
a number of post-filtering approaches. This refinement allows
us to (i) include additional metadata from IMDb (see Sec-
tion Post-Filtering & Re-Ranking with IMDb Data), and (ii)
optionally include reddit narratives (see Section Post-Filtering
& Re-Ranking with Reddit Narratives). Again, for evalua-
tion of various post-filters we take a data-driven approach and
make an extensive cross-validation over various configuration.
This allows us to evaluate both importance of the individ-
ual post-filters as well as the interactions between different
post-filters.

With post-filtering techniques we modify the calculated recom-
mendation list by (i) removing irrelevant recommendations for
a given movie, and (ii) re-ranking the obtained list. In general,
the more properties (e.g., genres, keywords, actors) the can-
didate movies have in common with a given input movie, the
higher they get ranked. For example, we compute the overlap
of genres of all input movies and a candidate movie. With
all scores calculated we re-rank the candidate lists by com-
bining algorithmic scores of each candidate recommendation
with the corresponding post-filtering scores to compile a final
recommendation list. We evaluate the resulting (final) list by
comparing it to human suggestions from our reddit evaluation
dataset. When limiting our final recommendation list to a total
of ten movies to be displayed, we achieve the best results with
500 candidate recommendations.19

Post-Filtering & Re-Ranking with IMDb Data
With IMDb metadata we re-rank candidate recommendations
with the following scores:

IMDb Popularity & Rating Score. Following the intuition
that users are generally more interested in higher and more
frequently rated movies, we introduce this score which com-
bines the average IMDb rating (rating score) of a candidate
movie and the number of ratings received on IMDb (popu-
larity score). We experiment with various functional forms
for the computation of both the average rating and the num-
ber of ratings. Specifically, we calculate logarithmic, square
root, quadratic, and cubic scaling and achieve the best results

18For an example see “More Like This” on https://www.imdb.com/
title/tt0076759

19We determine the length for the candidate list with a grid search
over the range from 100 to 1,000 movies in steps of 100.

https://www.imdb.com/title/tt0076759
https://www.imdb.com/title/tt0076759

with the following functional form: log2(Ri)ri, where ri is the
average rating, and Ri is the number of ratings of movie i.

IMDb Genre Score. Here, we follow the intuition that users
prefer movies of similar genres to the specified movies and
calculate the IMDb genre score for each candidate movie. As
part of our hyperparameter optimization, we compare sev-
eral overlap measures, including Jaccard’s coefficient, cosine
similarity, Sørensen-Dice coefficient, and simple matching co-
efficient. We achieve the best results with similar scaling and
normalizing of the overlap between the genres of the candidate
movie and individual positively associated movies from the
request so that SiGenre(i) = ∑ j∈IpMovie

(|Gi ∩G j|2/(|Gi||G j|)),
where IpMovie is the set of positively associated input movies.
The inclusion of negatively associated input movies does not
improve our results.

IMDb Year Score. We assume that users want to watch movies
from similar time periods unless explicitly stated otherwise.
Thus, we introduce the IMDb year score, where candidate
movies released closer in time to the input movies receive
higher scores. We set this score to 1 for a candidate movie
with the smallest difference in release year to one of the input
movies. We then linearly scale the year score until we reach 0
for a given maximal difference in release years. We obtain the
best results with a release year normalization of 50 years.20

IMDb Keyword Score. For our recommender framework, key-
words are words or phrases that represent a very specific at-
tribute of a movie. For the IMDb keyword score, we use the
plot keywords from IMDb and compute the overlap of all
plot keywords of a candidate movie and the plot keywords
of the input movies. We conduct a grid search experiment to
determine the most suitable overlap measures and whether it
is better to consider keywords from negative input movies or
not. We obtain the best performance when using Jaccard’s
coefficient as overlap measure while ignoring plot keywords
of negative input movies.

IMDb Predecessor & Successor Filters. We assume that users
do not want to receive a list of predecessors or successors
of the specified input movies as they are likely familiar with
the whole series. Hence, we remove predecessor and succes-
sor movies from our recommendation lists. For example, if
users ask for movies similar to The Hunger Games: Catching
Fire we remove The Hunger Games and The Hunger Games:
Mockingjay - Part 1 & 2 from our recommendation list.

Combining Scores. To compute the final score for each can-
didate movie we first normalize all computed scores by their
highest values, so that (for each score individually) the movie
with the highest score receives the value 1. Second, we config-
ure the post-filters for each recommender algorithm, as they
are not equally important across our approaches. To that end,
we multiply the scores with weights, reflecting their impor-
tance for the re-ranking of the recommendation lists and to
analyze differences between approaches. We conduct a grid
search experiment over all combinations of weights between
0.0 and 1.0 in steps of 0.2, and select the setup that yields

20Identified via grid search over the year-range from 20 to 100 in steps
of 10.

the best results in our experiments. Finally, we sum up all
weighted scores to obtain the final score for each movie.

Post-Filtering & Re-Ranking with Reddit Narratives
For the final step of our evaluation we incorporate metadata,
available in the narrative of the initial reddit submission, into
our recommendations using additional post-filters. Specifi-
cally, we use keywords, genres, actors, and years given in
the narrative of the movie suggestion requests in our reddit
evaluation dataset. Note that we can calculate post-filtering
scores from reddit narratives only if users explicitly provided
positively/negatively associated attributes or keywords (e.g.,
actors or genres) in a recommendation request (see Table 1).
With all scores calculated we re-rank the candidate lists (500
candidates) again by combining all IMDb post-filtering scores
of each candidate recommendation with the corresponding
narrative-based post-filtering scores to compile a final recom-
mendation list (ten recommendations). Again, we evaluate
the resulting (final) list by comparing it to human suggestions
from our reddit evaluation dataset. To that end, we define and
compute the following narrative-based post-filtering scores
and evaluate their importance by conducting a grid search
experiment:

Narrative-Based Genre Score. If genres are stated in the narra-
tive of a request, we use them to calculate the narrative-based
genre score for each candidate movie. We ran the same grid
search experiment as we did for the IMDb Genre Score and
determined that the same overlap metric yields the best results.
In contrast to the IMDb Genre Score, we remove movies with
undesired genres from our recommendation list.

Narrative-Based Year Filter. If users explicitly state year
thresholds, we re-rank the recommendation list so that movies
outside this range are moved to the end of the list.

Narrative-Based Keyword Score. We exploit keywords in a
specific request (e.g., “surprising plot twist”) to introduce the
narrative-based keyword score. With this score we measure
how well the description and the user reviews of a candidate
movie reflect the keywords stated in a narrative. We conduct a
grid search experiment to determine the most suitable overlap
measures for the computation of the narrative-based keyword
score. We find that counting the incidences of explicitly stated
keywords in the description and all user reviews of the respec-
tive candidate movies yields the best results. We aggregate
the incidences for positive input keywords and subtract them
for negative ones. Finally, we compute the narrative-based
keyword score by normalizing over the number of words in
the used texts.

Narrative-Based Actor Filter. To reflect the requirement of
only recommending movies with one or more specific actors,
we introduce the actor filter. We re-rank the list of movie
recommendations by counting how many of the positively
stated actors appear in the respective movies. Further, we
remove all movies with actors that users explicitly specified
as undesired.

Combining Scores. To combine all narrative-based post-
filtering scores we use the same method as for the IMDb
post-filtering scores.

Figure 2: Results. This figure depicts the results of our evaluation, comparing our recommendations to the ones of the reddit
community in our reddit evaluation dataset. We list the different evaluation metrics on the x-axis, with the corresponding evaluation
metric values on the y-axis. The performances of the recommender algorithms with IMDb post-filters are represented by the
transparent bars, while the filled bars depict the results for the approaches with additional narrative-based post-filters using reddit
data. The grey error bars show the standard deviation of the evaluation metric over all submissions in the test set. All of our
approaches outperform the IMDb baseline (dashed horizontal line). We can further improve the results by adding narrative-based
post-filters, where Doc2Vec outperforms all other approaches with F1 scores more than twice as good as the IMDb baseline,
followed by MF, CF, and TF-IDF, and least improvements for NW.

Evaluation
We evaluate the implemented approaches on our reddit eval-
uation dataset. Specifically, we use the narrative from each
submission to calculate movie recommendations and count the
overlap between the movie suggestions of the reddit commu-
nity, extracted from the replies to corresponding submission
(see Section Reddit Narratives Evaluation Dataset) and our al-
gorithmic movie recommendations. We calculate precision, re-
call, F1 score, normalized discounted cumulative gain (nDCG),
and mean average precision (MAP) [28, 35]. After training
our approaches on the IMDb data, we chronologically split
our reddit evaluation dataset into a validation (80%) and a test
(20%) set (see Table 3). We use (i) the validation set to conduct
all grid search experiments for optimizing hyperparameters for
the recommender framework, and (ii) the test set to evaluate
the performance of the implemented approaches. We limit
our final recommendation lists to ten movies.21 To allow for
a fair comparison we also limit the number of recommenda-
tions for our IMDb baseline to ten movies (picked at random,
as recommendations are not ranked). First, we evaluate the
standard algorithms with post-filters and scores calculated by
using IMDb metadata. Second, we measure the performance
improvements with the narrative-based post-filters and scores.

Table 3: Evaluation Protocol. Basic statistics of the validation
set and the test set.

#Submissions Timeframe
Validation Set 1,184 08-2011 – 11-2016
Test Set 296 11-2016 – 07-2017

Overall 1,480 08-2011 – 07-2017

RESULTS & DISCUSSION

Post-Filtering & Re-Ranking with IMDb Data
Figure 2 depicts the results of the evaluation of our imple-
mented algorithms for calculating recommendations for a
given narrative using our reddit evaluation dataset. The trans-
parent bars represent the means of the evaluation metrics over
all submissions in the test set for a given approach using only
IMDb-based post-filters, with the error bars showing the stan-
dard error. All of our analyzed approaches, while only relying
on IMDb-based post-filters, manage to outperform the IMDb
baseline (cf. horizontal dashed line in Figure 2). Doc2Vec
performs best in all evaluation metrics with an F1 score of
0.117, which is more than twice as good as the IMDb baseline,
followed by MF with 0.107, CF with 0.094 and TF-IDF with
0.089, and NW, which performs consistently worst with an F1
score of 0.056, while still outperforming the IMDb baseline.

One possible reason for the moderate performance of NW
might be that this approach is fundamentally based on the
assumption that users want to see other movies with a similar
cast. This inherent restriction appears to impair our results
when incorporating the narratives provided by users. However,
more research is warranted to further investigate this hypothe-
sis, which we leave open for addressing in future work. MF
and CF perform roughly twice as good as NW, possibly due to
the larger amount of considered data. They are both based on
user ratings and follow similar intuitions (i.e., both approaches
favor frequently and highly rated movies), which could ex-
plain the similarity in the obtained results. TF-IDF, which is
based on the text of movie descriptions and user reviews, per-
forms similar to CF. Doc2Vec performs best of all approaches
using the same data, which we attribute to the underlying
mechanisms of the approach. Compared to TF-IDF vectors,

21This means that recall@10 and F1 score@10 have a mean upper
limit of 0.34 and 0.51 respectively, as the average number of movie
suggestions from the community per submission is 29.22 in the test
set.

Figure 3: Score Weights. Each figure visualizes the score weight configuration of one approach. The algorithmic score and the
IMDb popularity and rating scores are important characteristics across most of our approaches. Using narrative-based post-filters,
the most important property are the keywords with weights up to 1.0. This also indicates that keywords are important for calculating
narrative-driven recommendations.

word embeddings better incorporate latent factors in textual
representations, leading to better similarity calculations and,
therefore, better recommendations.

Importance of Post-Filters. We present the best-performing
IMDb-based post-filter configuration for each approach by
depicting the normalized score weight for each post-filter in
Figure 3 (obtained by cross-validation), where a higher score
signals higher importance of a given post-filter.

In case of CF, we obtain the best-performing configuration
with a weight of 0.8 for the algorithmic score, a weight of
0.0 for IMDb popularity and rating influence, and relatively
low weights of 0.4 for IMDb genre, keyword and year scores.
For MF a higher algorithmic score weight (1.0) and high pop-
ularity and rating influence of 0.8 work best, while the year
score is completely neglected and the IMDb genre and key-
word scores are set to 0.2 and 0.4, respectively. The content-
based approaches (TF-IDF and Doc2Vec) exhibit similar best-
performing configurations with a 1.0 weight for the algorith-
mic scores, a 0.6 weight for the IMDb popularity and rating
scores and a 0.2 weight for the IMDb year scores. The weights
for the IMDb genre and keyword scores range between 0.0 to
0.4. In contrast, NW mainly relies on keywords and popularity
and rating influence with weights of 0.6 for the algorithmic
score, 1.0 for the IMDb popularity and rating score and 0.8 for
the IMDb keyword score. Similar to most other approaches,
the influence of IMDb genres and years is quite low.

Findings. Our results reveal that for narrative-driven rec-
ommendation scenarios traditional recommender algorithms
exhibit only minimal overlaps with human suggestions. Specif-
ically, the algorithmic recommendations using post-filtering
with IMDb metadata are computed by calculating similarities
between the input movies and the movies from our dataset,
while the narrative from reddit is neglected. However, addi-
tional information provided by users within their submissions
appears to be crucial for the selection of appropriate movie
suggestions. Users on reddit parse and consider this infor-
mation, discerning their recommendations from algorithmic
ones.

Post-Filtering & Re-Ranking with Reddit Narratives
In Figure 2 we also show the results of our experiments with
post-filtering and re-ranking of the recommendations using the
information from reddit narratives. Due to the fact that we now

include narratives we can observe substantial improvements
of our results when adding—and carefully configuring—post-
filtering techniques (cf. transparent versus color-filled bars in
Figure 2). Although not exhausting the potential for improve-
ment, we raise F1 scores of our approaches to be more than
twice as high as the IMDb baseline, except for NW. Again,
we achieve the best results using Doc2Vec with an F1 score
of 0.126, closely followed by MF with 0.123, CF with 0.115
and TF-IDF with 0.109.

Importance of Post-Filters. Although the inclusion of the
narrative information improves the recommendations, this
additional information needs to be properly configured and
strongly depends on the underlying algorithm. For all ap-
proaches, the best-performing configuration exhibits higher
score weights for keywords extracted from the reddit narra-
tives than for genres. For CF and NW, the narrative-based
keyword score is very important, with configuration weights
of 1.0, while it is 0.6 for MF and TF-IDF and 0.2 for Doc2Vec.
For the narrative-based genre score CF, MF and NW have
the same weights of 0.4, while the content-based approaches
(TF-IDF and Doc2Vec) exhibit lower score weights of 0.2.

Findings. We find that carefully weighing the different post-
filters, particularly in combination with the algorithmic, popu-
larity and rating score, is important to maximize the benefit of
the additional information contained in a given narrative.

Further, we find that for all approaches the most important
narrative-based post-filter is the keyword score. From this re-
sult, we conclude that narrative recommendation requirements,
provided in the form of keywords (i.e., the gist of a given text,
such as short aspects of the story of a movie), are integral
for achieving the best recommendations in our setup. We
hypothesize that these keywords provide our post-filters with
important information, that specifically helps to filter noise
(i.e., unwanted movies) and steer our results towards more
fitting movies. However, more research is warranted not only
to confirm our hypothesis, but also to determine if additional
post-filter or re-ranking strategies exist, for example, based on
analyzing characteristics of recommendation requests, which
could help to further improve our results.

Besides the narrative-based keyword score, the algorithmic
and popularity and rating scores are also important for most
of our approaches. This finding also strengthens our intuition
that the configuration of algorithmic scores and post-filters is

(a) Results (b) Score Weights

Figure 4: Empirical Recommendations. This figure depicts
the evaluation results and best-performing score weights of
the experiment on applying post-filtering techniques on empir-
ical recommendation lists. Subfigure 4a shows the results of
our evaluation, comparing the IMDb recommendations to the
ones of the reddit community in our reddit evaluation dataset
with IMDb post-filters (transparent bars) and with additional
narrative-based post-filters using reddit data (colored bars).
We list the different evaluation metrics on the x-axis, with the
corresponding values on the y-axis, again. Subfigure 4b vi-
sualizes the best-performing score weight configuration. The
most important characteristics are keywords from IMDb and
from the reddit narratives.

important for the computation of narrative-driven recommen-
dations, and that it is not sufficient to simply apply filters on a
given pool of existing recommendations as valuable informa-
tion is lost and neglected in that process.

Except for NW, the influence of the IMDb genre and keyword
scores are similarly low across all approaches. The least impor-
tant score is the IMDb year score with weights ranging from
0.0 to 0.4. In fact, after manually inspecting our dataset, it
appears that movies suggested by humans are more frequently
from different years (even decades) than the movies mentioned
in the recommendation requests (i.e., reddit submissions).

Applying Post-Filters on Empirical Recommendations
In addition to the datasets presented in this paper, we con-
duct another experiment to see if our post-filtering strategies
can also improve our baseline IMDb recommendations. To
that end, we apply all our post-filters on the IMDb baseline.
We deploy the same evaluation setup as for our other previ-
ous experiments. First, we conduct a grid-search experiment
to achieve the best-performing post-filter weights combina-
tion. Second, we apply all IMDb post-filters on the IMDb
recommendations list and use the top ten recommendations for
evaluation. The results, represented by the transparent bars in
Figure 4a, reveal that additional IMDb metadata can be used
to improve the resulting recommendations. Finally, we add
post-filters with metadata from reddit narratives to the IMDb
recommendations and further improve our results (see filled
bars in Figure 4a), showing that it is possible to refine and
improve recommendation algorithms to better support a given
narrative using the post-filters presented in this paper.

The most important post-filters for this approach are the key-
word scores from the IMDb data as well as from the reddit
narratives (see Figure 4b). This further strengthens our finding
that keywords provided in narratives are an important fac-
tor when re-ranking recommendations. Note that we do not
have an algorithmic score for this approach as IMDb does not
provide a ranking for their recommendations.

CONCLUSIONS & FUTURE WORK
In this paper, we analyzed and evaluated the potential of a se-
lection of five (MF, CF, TF-IDF, Doc2Vec, NW) recommender
algorithms as well as one empirical recommender approach
(IMDb) to calculate narrative-driven recommendations. To be
able to conduct our analyses, we crowdsourced a dataset from
reddit for evaluating narrative-driven recommendations and
made this dataset available to other researchers. Moreover,
we re-ranked the computed recommendation lists via post-
filtering techniques based on specific user requirements from
the reference dataset. With our experiments we showed that (i)
all implemented recommender approaches struggle to match
human-based recommendations and that (ii) the incorporation
of the information contained in the narratives (e.g., in the form
of post-filters) can substantially improve the performance of
recommender algorithms. However, we also showed that our
post-filters have to be carefully configured to maximize the
benefits of the added information, as the algorithmic score is
an important feature across all approaches. Particularly, when
applying post-filters on empirical data, we demonstrate that
our post-filtering techniques can improve existing approaches,
albeit limited due to the lack of an algorithmic score.

For future work, we plan to incorporate the data from reddit
narratives in the training phase in the form of, for instance, an
additional regularization term. Currently, the recommender al-
gorithms can not be directly trained on the reddit data due to its
sparsity but, as our results show, narrative information and the
previous human suggestions represent a valuable information
that should be leveraged already in the training phase.

Further, we plan on applying our methods to different domains,
such as books, board games, or video games, to investigate
whether different communities exhibit similar or different rec-
ommendation behaviors. Moreover, we will conduct a quali-
tative evaluation of our recommender framework to study if
our suggestions are perceived as useful by the recommenda-
tion requesters. We are also dedicated to analyze additional
post-filters, informed by characteristics of our reddit evalua-
tion dataset, as well as expanding the arsenal of implemented
recommender approaches, such as deep learning and different
embedding approaches for the calculation of narrative-driven
recommendations. Additionally, we plan on conducting ex-
periments on reddit, by implementing a recommender bot that
users can query for recommendations, while providing a narra-
tive. Using this bot, we will be able to evaluate the importance
of additional metrics, such as diversity, serendipity or novelty
in the context of narrative-driven recommendations.

In this paper we present and publish a reference evaluation
dataset, as well as a first analysis of post-filtering and re-
ranking strategies for incorporating narratives into recommen-
dations. We strongly believe that our reference evaluation

dataset, as well as the presented experiments in this paper
will help researchers and practitioners to develop new and
improve existing recommendation approaches to better tackle
the problem of narrative-driven recommendations, which also
represents a fundamental problem in need of novel solutions
for the advance of chat and voice bots.

REFERENCES
1. Gediminas Adomavicius, Ramesh Sankaranarayanan,

Shahana Sen, and Alexander Tuzhilin. 2005.
Incorporating contextual information in recommender
systems using a multidimensional approach. ACM
Transactions on Information Systems (TOIS) 23, 1 (2005),
103–145.

2. Gediminas Adomavicius and Alexander Tuzhilin. 2005.
Toward the next generation of recommender systems: A
survey of the state-of-the-art and possible extensions.
IEEE transactions on knowledge and data engineering
17, 6 (2005), 734–749.

3. Gediminas Adomavicius and Alexander Tuzhilin. 2011.
Context-Aware Recommender Systems. Springer US,
Boston, MA, 217–253.

4. Gediminas Adomavicius, Alexander Tuzhilin, and Rong
Zheng. 2011. REQUEST: A query language for
customizing recommendations. Information Systems
Research 22, 1 (2011), 99–117.

5. Chumki Basu, Haym Hirsh, William Cohen, and others.
1998. Recommendation as classification: Using social
and content-based information in recommendation. In
Aaai/iaai. 714–720.

6. Jason Michael Baumgartner. 2015. Reddit comment
dataset. Website. (July 2015).
https://www.reddit.com/r/datasets/comments/3bxlg7/i_

have_every_publicly_available_reddit_comment.

7. Toine Bogers. 2015. Searching for Movies: An
Exploratory Analysis of Movie-related Information
Needs. iConference 2015 Proceedings (2015).

8. Toine Bogers and Marijn Koolen. 2017. Defining and
Supporting Narrative-driven Recommendation. In
Proceedings of the Eleventh ACM Conference on
Recommender Systems. ACM, 238–242.

9. Peter F. Brown, Peter V. deSouza, Robert L. Mercer,
Vincent J. Della Pietra, and Jenifer C. Lai. 1992.
Class-based N-gram Models of Natural Language.
Comput. Linguist. 18, 4 (Dec. 1992), 467–479.

10. Konstantina Christakopoulou, Filip Radlinski, and Katja
Hofmann. 2016. Towards Conversational Recommender
Systems.. In KDD. 815–824.

11. Christina Christakou, Spyros Vrettos, and Andreas
Stafylopatis. 2007. A hybrid movie recommender system
based on neural networks. International Journal on
Artificial Intelligence Tools 16, 05 (2007), 771–792.

12. Christian Desrosiers and George Karypis. 2011. A
comprehensive survey of neighborhood-based
recommendation methods. Recommender systems
handbook (2011), 107–144.

13. Simon Funk. 2006. Netflix update: Try this at home.
(2006).

14. Sumit Ghosh, Manisha Mundhe, Karina Hernandez, and
Sandip Sen. 1999. Voting for Movies: The Anatomy of a
Recommender System. In Proceedings of the Third
Annual Conference on Autonomous Agents (AGENTS
’99). ACM, New York, NY, USA, 434–435.

15. Negar Hariri, Bamshad Mobasher, and Robin Burke.
2013. Query-driven Context Aware Recommendation. In
Proceedings of the 7th ACM Conference on
Recommender Systems (RecSys ’13). ACM, New York,
NY, USA, 9–16.

16. Zan Huang, Xin Li, and Hsinchun Chen. 2005. Link
Prediction Approach to Collaborative Filtering. In
Proceedings of the 5th ACM/IEEE-CS Joint Conference
on Digital Libraries (JCDL ’05). ACM, New York, NY,
USA, 141–142.

17. Yehuda Koren. 2008. Factorization meets the
neighborhood: a multifaceted collaborative filtering
model. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and
data mining. ACM, 426–434.

18. Daniel Lamprecht, Florian Geigl, Tomas Karas, Simon
Walk, Denis Helic, and Markus Strohmaier. 2015.
Improving Recommender System Navigability Through
Diversification: A Case Study of IMDb. In Proceedings
of the 15th International Conference on Knowledge
Technologies and Data-driven Business (i-KNOW ’15).
ACM, New York, NY, USA, Article 21, 8 pages.

19. Quoc Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In
International Conference on Machine Learning.
1188–1196.

20. Tariq Mahmood and Francesco Ricci. 2009. Improving
Recommender Systems with Adaptive Conversational
Strategies. In Proceedings of the 20th ACM Conference
on Hypertext and Hypermedia (HT ’09). ACM, New
York, NY, USA, 73–82.

21. Harry Mak, Irena Koprinska, and Josiah Poon. 2003.
Intimate: A web-based movie recommender using text
categorization. In Web Intelligence, 2003. WI 2003.
Proceedings. IEEE/WIC International Conference on.
IEEE, 602–605.

22. Lorraine McGinty and James Reilly. 2011. On the
evolution of critiquing recommenders. In Recommender
Systems Handbook. Springer, 419–453.

23. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781 (2013).

https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment
https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment

24. Kenta Oku, Shinsuke Nakajima, Jun Miyazaki, and
Shunsuke Uemura. 2006. Context-aware SVM for
context-dependent information recommendation. In
Proceedings of the 7th international Conference on
Mobile Data Management. IEEE Computer Society, 109.

25. Umberto Panniello, Alexander Tuzhilin, Michele
Gorgoglione, Cosimo Palmisano, and Anto Pedone. 2009.
Experimental comparison of pre-vs. post-filtering
approaches in context-aware recommender systems. In
Proceedings of the third ACM conference on
Recommender systems. ACM, 265–268.

26. Arkadiusz Paterek. 2007. Improving regularized singular
value decomposition for collaborative filtering. In
Proceedings of KDD cup and workshop, Vol. 2007. 5–8.

27. Patrice Perny and Jean-Daniel Zucker. 2001.
Preference-based search and machine learning for
collaborative filtering: the “film-conseil” movie
recommender system. Information, Interaction,
Intelligence 1, 1 (2001), 9–48.

28. David Martin Powers. 2011. Evaluation: from precision,
recall and F-measure to ROC, informedness, markedness
and correlation. (2011).

29. Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter
Bergstrom, and John Riedl. 1994. GroupLens: An Open
Architecture for Collaborative Filtering of Netnews. In
Proceedings of the 1994 ACM Conference on Computer
Supported Cooperative Work (CSCW ’94). ACM, New
York, NY, USA, 175–186.

30. Ruslan Salakhutdinov and Andriy Mnih. 2007.
Probabilistic Matrix Factorization.. In Nips, Vol. 1. 2–1.

31. Ruslan Salakhutdinov and Andriy Mnih. 2008. Bayesian
probabilistic matrix factorization using Markov chain
Monte Carlo. In Proceedings of the 25th international
conference on Machine learning. ACM, 880–887.

32. Gerard Salton and Michael J McGill. 1986. Introduction
to modern information retrieval. (1986).

33. Badrul Sarwar, George Karypis, Joseph Konstan, and
John Riedl. 2001. Item-based Collaborative Filtering
Recommendation Algorithms. In Proceedings of the 10th
International Conference on World Wide Web (WWW
’01). ACM, New York, NY, USA, 285–295.

34. Paul Seitlinger, Dominik Kowald, Simone Kopeinik, Ilire
Hasani-Mavriqi, Tobias Ley, and Elisabeth Lex. 2015.
Attention Please! A Hybrid Resource Recommender
Mimicking Attention-Interpretation Dynamics. In
Proceedings of the 24th International Conference on
World Wide Web (WWW ’15 Companion). 339–345.

35. Emine Yilmaz, Evangelos Kanoulas, and Javed A. Aslam.
2008. A Simple and Efficient Sampling Method for
Estimating AP and NDCG. In Proceedings of the 31st
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR ’08). ACM, New York, NY, USA, 603–610.

	Introduction
	Related Work
	Reddit Narratives Evaluation Dataset
	Experimental Setup
	Recommender Strategies
	Post-Filtering & Re-Ranking
	Post-Filtering & Re-Ranking with IMDb Data
	Post-Filtering & Re-Ranking with Reddit Narratives

	Evaluation

	Results & Discussion
	Post-Filtering & Re-Ranking with IMDb Data
	Post-Filtering & Re-Ranking with Reddit Narratives
	Applying Post-Filters on Empirical Recommendations

	Conclusions & Future Work
	References

