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ABSTRACT
Modeling activity in online collaboration websites, such as
StackExchange Question and Answering portals, is becom-
ing increasingly important, as the success of these websites
critically depends on the content contributed by its users. In
this paper, we represent user activity as time series and per-
form an initial analysis of these time series to obtain a bet-
ter understanding of the underlying mechanisms that govern
their creation. In particular, we are interested in identifying
latent nonlinear behavior in online user activity as opposed
to a simpler linear operating mode. To that end, we apply
a set of statistical tests for nonlinearity as a means to char-
acterize activity time series derived from 16 different online
collaboration websites. We validate our approach by com-
paring activity forecast performance from linear and nonlin-
ear models, and study the underlying dynamical systems we
derive with nonlinear time series analysis. Our results show
that nonlinear characterizations of activity time series help
to (i) improve our understanding of activity dynamics in on-
line collaboration websites, and (ii) increase the accuracy of
forecasting experiments.
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1. INTRODUCTION
Online Question and Answering portals, such as StackEx-

change or Quora, are immensely popular and helpful online
resources with very large communities, amassing millions of
users, questions and answers each1. However, while some on-
line portals strive and blossom, the majority fails to attract
users and never reaches critical mass, requiring them to shut
down due to lack of activity, such as Google’s knol project2.
In this paper, we are motivated by the identification of key

1See, for example, http://stackexchange.com/sites?
view=list#traffic
2http://knol.google.com/
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deciding features of activity time series, which hopefully will
provide the foundation to distinguish successful and failing
systems. In a first step towards this ambitious goal, we gen-
eralize the problem and apply several nonlinear time series
analysis techniques to grasp and characterize hidden nonlin-
ear behavior affecting activity dynamics. Current research
on the study of dynamics governing such online collaboration
websites focuses on model derivation with nonlinear, differ-
ential, parametric dynamical systems to describe observed
data [14, 22]. However, such approaches are general purpose
approaches, designed to fit observed data while minimizing
the model’s configuration effort to retain interpretability. In
particular, these models do not address specificities of dif-
ferent websites or portals (e.g. StackExchange’s Math vs.
TeX portals) and do not aim to provide more than a general
indicator for trends in activity of collaboration networks.

In this paper, we expand on existing work by conducting
the following experiments on 16 randomly picked instances
of the StackExchange portal: First, we categorize activity
time series derived from online collaboration websites by the
time series’ likelihood to have stemmed from some hidden,
nonlinear dynamical system. To that end, we use 9 statis-
tical tests for nonlinearity to assess the adequateness of a
nonlinear dynamical system to model activity. Then, we
validate the plausibility of this categorization by compar-
ing forecast performance from 3 standard time series mod-
els with nonlinear models, reconstructed from the observed
activity time series. Finally, we present an exemplary study
of nonlinearity properties of 2 datasets.

We find that activity in online collaboration websites may
be modeled accurately by underlying, reconstructed dynam-
ical systems to varying degrees, with some online collabo-
ration websites showing more signs of nonlinear behavior
than others. We use these differences to characterize the
datasets and show how this knowledge may be used to not
only improve activity modeling and forecasting efforts, but
also better grasp datasets with nonlinear behavior by using
tools from nonlinear time series analysis.

Our main contribution is therefore the improvement of the
dynamical system modeling process for activity dynamics in
online collaboration websites: Instead of postulating a ”one-
size-fits-all“ dynamical system description via parametrized
nonlinear equations, as done e.g. by Ribeiro [14] and Walk
et al. [22], we reconstruct dynamical system descriptions di-
rectly from observed data and assess the feasibility of such a
reconstruction. This allows us to tailor time series models to
different data origins and thereby improve activity dynam-
ics forecast quality. Furthermore, the use of nonlinear time



series analysis techniques, such as Recurrence Plots analy-
sis, further boosts our understanding of nonlinear activity
dynamics, for example through the identification of changes
in stationarity or chaotic dynamics, leading to more model
fine-tuning possibilities, which incorporate such information.

2. RELATED WORK
We review related work from the following two fields of

research: nonlinear time series analysis applications and dy-
namical systems for networks.
Nonlinear Time Series Analysis and its Applications.
Nonlinear time series analysis revolves around reconstruct-
ing a high dimensional dynamical system from an univariate
time series, and studying the properties of the reconstructed
dynamical system to derive knowledge on the original, uni-
variate time series [1]. Nonlinear time series analysis en-
ables studies on the deterministic and chaotic, rather than
stochastic, nature of time series. Chaos means, in this sense,
that small differences in a time series’ present lead to great
changes in its future, despite the dynamical system govern-
ing the time series’ evolution being intrinsically determinis-
tic.

Nonlinear time series analysis offers theoretical and prac-
tical tools to deal with reconstructed dynamical systems [12,
1], and these tools have found application in numerous ar-
eas [16, 7, 17]. In one of the most prominent applications
of nonlinear time series analysis, Small and Tse [16] discuss
how to predict the outcomes of a roulette wheel. A num-
ber of authors have also investigated the presence of chaotic
behavior in financial markets, for example, by assessing non-
linearity in stock returns with statistical tests for chaos [7]
or identifying events in stock returns with Recurrence Plots
(RP) and Recurrence Quantification Analysis (RQA) [17].

For a detailed survey of the theory and application of
RP and RQA we refer the interested reader to Bradley and
Kantz [1] and Marwan et al. [12].
Dynamical Systems for Networks. Dynamical systems
are a well studied topic from the standpoint of mathematics
and physics [11, 6]. In general, dynamical systems provide
mathematical descriptions on the evolution along the time
dimension of a set of numeric quantities. They are employed
to describe phenomena like the motion of a mass along some
path according to Newton’s laws, population growth or even
macro-economic systems.

Application categories for dynamical systems on networks
include, for example activity dynamics. In the context of col-
laboration on the Web, activity dynamics apply dynamical
systems on network theory to study the evolution of activity
in different types of networks. The work by Ribeiro [14] in-
troduces a dynamical system to model activity in membership-
based community web pages, where activity is a time series
representing the number of daily active users in such web
pages. The author’s model incorporates two main factors,
namely web page users becoming spontaneously active and
active users influencing inactive ones to become active. With
this model, the author explains and predicts when a web
page has reached a self-sustaining level of activity. More
recently, Walk et al. [22] also applied dynamical systems
theory to study activity dynamics in the context of col-
laboration networks, such as those arising in Question and
Answering portals in the web. Here, the authors directly
derive their key contributions from the activity dynamics
model they propose, which include the self-sustaining level

of activity for that type of collaboration network and the
robustness of a collaboration network’s activity.

In general, the authors of previously mentioned papers all
propose a mathematical model, consisting of parametrized
equations for a dynamical system, as a means to describe ob-
served behavior. In contrast, we do not postulate parametrized
equations describing a dynamical system on a network. In-
stead, we interpret the observed activity data, in the form of
time series, as one dimensional projections of a hidden, com-
plex and higher dimensional dynamical system. We study
the feasibility of reconstructing the dynamical systems un-
derlying the activity time series, characterize these activity
time series by their propensity to have originated in such
complex dynamical systems, and inspect the reconstructed
dynamical system’s properties.

3. METHODOLOGY

3.1 Forecasting univariate time series
Time series are sequences of numerical values (or observa-

tions), indexed and ordered by time. We consider discrete
univariate time series, where each time index is uniquely
associated with one observation. Moreover, we assume the
time series observations are equally spaced in time.
Assessing nonlinearity in univariate time series. Not
all univariate time series are equally suited for the recon-
struction of a dynamical system; the presence of e.g. noise or
randomness greatly influence the embedding. Therefore, we
assess nonlinearity of univariate time series via the 9 follow-
ing statistical tests: Broock, Dechert and Scheinkman test
[2]; Teraesvirta’s neural network test [19]; White neural net-
work test [10]; Keenan’s one-degree test for nonlinearity [9];
McLeod-Li test [13]; Tsay’s test for nonlinearity [21]; Likeli-
hood ratio test for threshold nonlinearity [4]; Wald-Wolfowitz
runs test [4]; Surrogate test - time asymmetry [15].

We apply these tests without configuration changes, ex-
cept for the Broock, Dechert and Scheinkman and Wald-
Wolfowitz runs tests. As described in Zivot and Wang [23,
p. 652], we compute the test statistic of Broock, Dechert and
Scheinkman on the residuals of an autoregressive integrated
moving average (ARIMA) model, a class of linear models
basing on auto regression, to check for nonlinearity not cap-
tured by the ARIMA model. For the Wald-Wolfowitz runs
test, since a run represents a series of similar responses, we
define a positive run as the amount of times the time series
value was greater than the previous one [20].
Reconstructing state space from univariate time se-
ries. Nonlinear time series analysis studies dynamical sys-
tems reconstructed from univariate time series. Takens [18]
presents an embedding function, which, under certain con-
ditions, maps an univariate time series to the higher dimen-
sional phase space the reconstructed dynamical system lives
in, and restores the topological characteristics of the dynam-
ical system’s reconstructed state space.

We briefly present theory on the embedding map required
to reconstruct the state space of a dynamical system.

If xt denotes the value of a time series x at time t, then
an embedding of x can be obtained with a reconstruction
vector of the form

Rt = (xt, xt−τ , xt−2τ , . . . , xt−(m−1)τ ) ∈ Rm. (1)

There are two free parameters in equation 1: τ and m. τ is
the time lag, representing a distance in time between time



(a) Lorenz system has two at-
tractors

(b) Time series of the Lorenz sys-
tem’s first component

(c) The reconstructed state space
plot shows the attractors

(d) The recurrence plot of the
Lorenz system reflects overall dy-
namics of the system

Figure 1: Illustration of nonlinear time series analysis with the Lorenz dynamical system. Figure 1a depicts the
Lorenz system with parameters σ = 10, β = 8/3 and ρ = 28. We extract the Lorenz system’s first component, shown in
Figure 1b, and then reconstruct its state space with the embedding described in the embedding theory part of Section 3.1.
The results of that embedding, with parameters τ = 11 and m = 4, are the subject of picture 1c (showing only 3 dimensions).
The reconstructed state space captures the original structure of the Lorenz system and its two attractors remarkably well.
The structure of the Lorenz system can also be observed in the corresponding recurrence plot (RP) (see 1d). The RP shows
the Lorenz attractors prominently around time indexes 1600 and 4200. Note also the large number of short diagonals around
the main diagonal of the plot: These reflect the chaotic behavior of this Lorenz system.

series observations. m is the embedding dimension, i.e. the
size of the vectors Rt in the space of the reconstructed dy-
namical system.

To estimate the embedding parameters, we start with the
time lag τ . Bradley and Kantz [1] stress that τ should be
large enough to encompass one full cycle of a time series’
periodic dynamics. To estimate such a cycle’s length (and
thus τ too), the same authors propose different measures
of independence between time series observations. We use
the first minimum of average mutual information between
observations as a measure of independence to estimate τ .
The estimation of the embedding dimension m is an iterative
process, which consists of computing some invariant of the
reconstructed dynamical system for m = 1, 2, . . . . We stop
the process when the value of the invariant stabilizes, which
indicates that the reconstructed dynamical system has been
properly unfolded. We employ the commonly used iterative
procedure [3] for the estimation of the embedding dimension.
Forecasts from linear models. To forecast an univariate
time series, often used models include linear, ARIMA and
ETS models.

In a linear model, a target variable is expressed as a linear
combination of explanatory variables. We choose Fourier co-
efficients as explanatory variables, to account for seasonality
effects of the type we encounter in the data described in 4.1.

The ARIMA class of models comprises auto-regressor mod-
els, which express the target univariate time series as a linear
combination of its own past values and some lagged moving
average error terms as well. This class of models assumes
weak stationarity of the time series, so differencing—a tech-
nique to make a time series stationary—may be applied.

The ETS class of models includes exponential smoothing
models, which—similarly to ARIMA—define the value of the
target time series as a linear combination of lagged terms,
such as level, trend, seasonality and error.

There are many variations of ARIMA and ETS time series
models, and we automate the choice of model parameters

and configurations with the algorithm devised by Hyndman
and Khandakar [8].
Forecasts nonlinear models. Forecasts from nonlinear
models require, first, the embedding map to reconstruct
state space dynamics from the target time series, as de-
scribed in the embedding theory part of Section 3.1. Given
an embedding, nonlinear models forecast a target time se-
ries first by searching for nearest neighbor (with respect to
the target time series) trajectories in the reconstructed state
space. Then, the forecast from the nonlinear model is the
arithmetic mean of future values of those near trajectories.

3.2 Recurrence Analysis
We analyze recurrences in reconstructed state space tra-

jectories with Recurrence Plots (RPs), which give insights
into both the behavior (e.g. stationary or drifting) and type
(e.g. periodic, deterministic chaotic or random) of recon-
structed dynamical systems, so we aim to use RPs to help
with the nonlinear characterization of our data.

The RP is associated with a recurrence matrix—a square
matrix which shows reconstructed state space trajectories ~xi
close to each other:

Ri,j(ε) = Θ(ε− ‖~xi − ~xj‖), (2)

where Θ is the Heaviside function and ε is the recurrence
threshold establishing closeness between reconstructed state
space trajectories ~xi. Thus, the RP is a scatter plot, simply
showing points where the recurrence matrix is equal to 1.
In Equation 2, we use the Euclidean norm and for ε we
take the standard deviation of the distance matrix of all
reconstructed state space trajectories.

Figure 1 shows an example of nonlinear time series anal-
ysis, complete with an RP characterization of the recon-
structed state space. Starting with the standard chaotic
Lorenz system, we extract its first component to reconstruct
its state space and we analyze the reconstruction. We ob-
serve that the reconstructed system’s topology accurately
resembles the original system’s one, and that the RP, with



Table 1: The table shows, per dataset, activity time series length in weeks, embedding parameters τ and m, nonlinearity test
results (nonlin. tests), i.e. number and reference of statistical tests indicating nonlinearity with a significance level of 95% out
of the 9 applied tests, normalized root mean squared error (RMSE) of a 1 year forecast per model. We also show the ranking
the Friedman test assigns to the models’ forecast RMSE for datasets with 5 or more tests indicating nonlinearity and the rest.
Nonlinear models show best prediction performance on datasets with more than five statistical tests indicating nonlinearity.

Dataset Weeks τ m
Nonlin.

test score
Positive

nonlin. tests
ARIMA ETS Linear Nonlin.

englishb 240 2 9 2/9 [2] [13] 0.6794 0.4452 0.3329 0.3080

unixb 239 1 7 2/9 [2] [13] 0.2091 0.2092 0.2418 0.2074

chemistryb 158 2 7 3/9 [2] [13] [4] 0.4982 0.2539 0.3247 0.4610
webmasters 244 1 8 3/9 [9] [13] [15] 0.2313 0.2528 0.3341 0.2346
chess 148 2 8 4/9 [2] [9] [13] [15] 0.2545 -a 0.5622 0.5110
history 177 1 9 4/9 [2] [9] [13] [4] 0.3503 0.2368 0.3044 0.4052
linguistics 181 2 6 4/9 [2] [9] [13] [15] 0.2512 0.2704 0.3009 0.3280
sqa 200 3 9 4/9 [2] [9] [13] [15] 1.8136 0.2531 0.6549 0.3903

texb 241 1 7 4/9 [13] [21] [4] [15] 0.1589 0.1580 0.2767 0.2751
tridion 107 1 7 4/9 [19] [10] [9] [13] 0.2717 -a 0.6144 -a

Friedman test rank of models’ forecast RMSE on datasets with nonlin. test score < 5/9 2 1 4 3

arduino 56 1 10 5/9 [2] [19] [10] [9] [13] 0.3489 -a -a -a

sports 159 1 7 5/9 [2] [9] [13] [4] [15] 0.2442 0.3348 0.4019 0.3323
ux 239 2 8 5/9 [2] [10] [9] [13] [21] 0.3479 0.1743 0.3491 0.1374
bitcoin 182 4 11 6/9 [2] [19] [10] [9] [13] [15] 0.6099 0.5549 0.5938 0.5781

mathb 242 2 8 6/9 [2] [19] [13] [21] [4] [15] 0.1327 0.2314 0.3521 0.2912
bicycles 235 2 7 7/9 [2] [19] [10] [9] [13] [4] [15] 0.2971 0.3097 0.3252 0.2805

Friedman test rank of models’ forecast RMSE on datasets with nonlin. test score ≥ 5/9 2c 2c 4 1

a This activity time series is too short for a 1 year forecast with this model.
b This activity time series had a strong linear trend, so the results above concern the activity time series detrended with linear regression.
c These models achieved the same rank in the Friedman test for this group of datasets.

its large number of small diagonals and its clusters of points
depicting the Lorenz attractors, reflects the overall chaotic
behavior of the Lorenz system.

4. EXPERIMENTAL SETUP

4.1 Datasets
For our analysis, we gathered data from 16 randomly

picked StackExchange3 questions and answers portals.
We follow the procedure described by Walk et al. [22] to

derive univariate time series describing activity in these on-
line collaboration websites: First, we measure a user’s activ-
ity in such online collaboration websites as the user’s num-
ber of questions, answers and comments per day. Then, we
smooth these daily activities with a rolling mean over a 7
day window, to account for and remove outliers, and aggre-
gate activity over all users per week. Finally, we require the
weekly activity time series to have at least one unit of activ-
ity (i.e. one post, reply or comment) per day. This implied
a burn-in of initial phases of inactivity or very low activity
from the activity time series. For more details, see Table 1.

4.2 Predicting Activity
To assess if the activity time series show signs of nonlin-

ear behavior, we apply all 9 statistical tests (described in the
nonlinearity assessment part of Section 3.1) on the datasets
(see 4.1), with a significance level of 95%. We then build a
ratio, per dataset, of the number of tests indicating nonlin-
earity out of all 9 tests. That ratio serves as an indicator for
hidden nonlinear dynamics, or not, in a given activity time
series: We conjecture that higher values of that ratio will
likely indicate hidden nonlinear dynamics, while datasets,
which score lower on that ratio, are less likely to have such
dynamics.

To test this approach for distinguishing time series with
nonlinear behavior, we benchmark the performance of non-
linear forecasts on all datasets against those from other mod-
els. For datasets, characterized as nonlinear by the nonlin-
earity tests, we expect time series forecasts from nonlinear
3http://stackexchange.com/

models to compare favorably against other models. The
other models we benchmark nonlinear models against are
linear, ARIMA and ETS models. For each of the datasets,
we train those four models on a shorter version of the activ-
ity time series, excluding the last year of activity. We pre-
dict that last year with each of those 4 models and, finally,
we compare the models’ forecast results with the empiri-
cally observed values. We use the root mean squared error,
normalized by the range of the activity time series, for the
forecast performance comparison.

Since the nonlinearity tests (see nonlinearity assessment
in Section 3.1) focus on the distinction between possibly
chaotic determinism and randomness, activity time series
with a strongly increasing (or decreasing) linear trend will be
recognized as non-random. Strong linear trends may mask
hidden nonlinear dynamics, which we aim to inspect.

Therefore, we first assess the strength of the trend of an
activity time series by inspection of both the time series’
plot and relative weight of a LOESS decomposition assigns
to the trend component of that time series. For time se-
ries with a strong linear component, we estimate the lin-
ear trend with a simple linear regression, minimizing the
weighted least squared error. Finally, we subtract that fitted
linear trend from the time series, and perform nonlinearity
tests and forecast computations on the detrended activity
time series.

5. RESULTS & DISCUSSION
Findings on nonlinearity assessment and activity fore-
cast models. We have listed all results of the nonlinear
characterization via nonlinearity tests and activity forecast
benchmarks in Table 1. The nonlinearity test scores indicate
some disparity in the presence of nonlinear dynamics for the
activity time series. Out of the 16 datasets we analyze, 6
datasets test five or more times positive for nonlinearity, and
the other 10 datasets below five times. We interpret this
split as an hint at some differences in nonlinear behavior of
these datasets, and compare modeling and forecasting per-
formance of the nonlinear, linear, ARIMA and ETS models
for each of those two groups of activity time series.



(a) Recurrence Plot for the math activity time series (b) Recurrence Plot for the bitcoin activity time series

Figure 2: Recurrence Plots (RPs) give insights into activity time series dynamics. Although both datasets, ”Math”
and ”Bitcoin”, have the same amount of statistical tests indicating nonlinearity, their RPs look quite different. The ”Math”
RP in figure 2a shows a higher density of recurrence points in the upper left corner, which gradually diminishes towards the
lower right corner; this is a sign of a drift in the activity time series, still present after linear detrending [12]. Note both
the diagonal as well as vertical structures present in Math’s RP. The former, prominent around time indexes 100 to 175,
could be a sign of chaotic dynamics, while the latter points towards states in the reconstructed state space which are (very)
slowly changing. In contrast to Math, Bitcoin’s RP in Figure 2b prominently features one strong main diagonal, with some
remarkable periodicity around it. Another interesting aspect of Bitcoin’s RP are the white bands around the main diagonal
and the cluster of recurrence points in the lower left (and by symmetry of the RP also upper right) corner. These both hint
at non-stationary transitions in the activity time series [12].

We assess the performance of these four models by cal-
culating the normalized root mean squared error of a one
year activity forecast with the Friedman test, as described
by Demšar [5]. The Friedman test ranks nonlinear model
performance highest for the group of datasets with more
than five statistical tests indicating nonlinearity. In con-
trast, the nonlinear models only rank third for the other
datasets, where less than five tests indicated nonlinear be-
havior. This result suggests a distinction in the degree of
hidden nonlinear behavior in these activity time series.

We reason that activity time series, which were character-
ized as less likely to be driven by hidden nonlinear dynamics,
were also better modeled by approaches other than nonlin-
ear models due to their strong stochastic behavior. In such
cases, we believe the role noise and external factors such as
events play should not be underestimated.

The nonlinearity tests [10] and [19] appear to be more sen-
sitive to the presence of nonlinear dynamics than other tests,
since they test positive for nonlinearity 4 times more often
in the dataset group with 5 or more tests indicating nonlin-
earity than in the other dataset group. Since [10] and [19]
apply neural networks to assess linearity in mean, we at-
tribute the usefulness of these two tests to the well-studied
ability of neural networks to model nonlinear behavior.

We observe that the choice of appropriate models for ac-
tivity dynamics should incorporate this characterization of
activity time series according to evidence found for nonlin-
ear behavior. Therefore, we find that a set of parametrized
dynamical system equations to describe activity dynamics
for all these StackExchange datasets at once, while easier
to grasp and interpret, will likely fail to accurately reflect
dataset specificities and thus perform poorer overall than
the tailoring of time series models and reconstruction, where
appropriate, of nonlinear dynamical system descriptions of
the observed data.
Recurrence Plot analysis. Due to limitations in space,
we perform an exemplary RP analysis on two activity time

series. In Figure 2, the RPs of the datasets ”Math” and ”Bit-
coin”, two datasets with 6 statistical tests indicating nonlin-
earity, suggest differences in their underlying nonlinear dy-
namical systems, despite the apparent resemblance afforded
by similar nonlinearity test results.

Math’s RP shows, even after linear detrending, a drift
pattern, which is conveyed by the reduction in recurrence
point density from the RP’s top-left to its bottom-right. We
can observe other properties in Math’s RP: There are some
signs of chaotic behavior, apparent by the numerous short
diagonals towards the lower-right corner and alongside the
RP’s main diagonal, and there are also some signs of slowly
changing states in activity, as the long vertical line along
time index 150 indicates. Armed with this knowledge we
could tailor any type of time series model better to the data:
The knowledge of drift enables us to introduce some param-
eter describing it. Slowly changing states transitioning to
chaotic behavior suggest the choice of some threshold model,
addressing those characteristics separately.

The main features of Bitcoin’s RP are the periodically re-
peating structures around the main diagonal, the prominent
white bands around the main diagonal and the point cluster
in the lower left corner (and, by symmetry of the RP, in
the upper right corner too). The latter two features indi-
cate strong stationarity changes, while the regularity along
the main diagonal hints at deterministic behavior. Again,
these observations help with activity dynamics model design:
We could introduce some periodic component to address the
observed regularities, and we could include some exogenous
variable to deal with the stationarity affecting events indi-
cated by the RP’s point clusters and white bands.

6. CONCLUSIONS & FUTURE WORK
We set out to explore a new and important issue on mod-

eling activity dynamics: to recognize and characterize dif-
ferent online collaboration websites by the plausibility of



hidden nonlinear dynamical systems governing them, and
thereby understand, model and forecast them better.

To address these open issues, we proposed using 9 different
statistical tests for the nonlinear characterization of activity
time series, and to validate this characterization with a com-
parison of the performances of different forecasting models.
We also provided a sample RP analysis of activity time series
characterized as nonlinear, to showcase the utility of these
methods.

Our results can be summarized as follows. Firstly, a char-
acterization of nonlinearity in activity time series by statisti-
cal tests gauges the plausibility of an activity time series be-
ing accurately described by dynamical systems (in contrast
to, for example, some stochastic process), thus influencing
model choice and helping discern driving forces of activity
in our datasets. Secondly, nonlinear models seem adequate
for forecasting activity time series, deemed nonlinear by sta-
tistical tests, more so than classical forecasting models (and
vice-versa), a distinction which improves overall activity dy-
namic forecast quality. Thirdly, nonlinear modeling enables,
via Recurrence Plots, a more granular study and deeper un-
derstanding of nonlinear dynamics governing activity time
series, allowing for finer customization of time series models
to explain activity in online collaboration websites.

This paper’s limitations are a direct consequence of those
of nonlinear time series analysis and the Friedman test’s
conservative estimations: Less noise, longer time series and
more datasets should make results more conclusive.

With the hope of understanding why we see the observed
activity dynamics, we believe that one of the most promis-
ing avenues for future work on nonlinear analyses of activity
dynamics to be the connection between network science and
the reconstructed dynamical systems. We speculate that
hidden connections between statistics on these reconstructed
dynamical systems, given for example by Recurrence Quan-
tification Analysis, and properties of the underlying collabo-
ration networks of websites will deliver further insights into
the dynamic processes driving activity.
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