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Abstract Recently, networks of user interactions in online systems gained a lot of
interest from our research community. Such networks are characterized by complex
bursty patterns of human user behavior. A lot of models for such networks are based
on the activity-driven time-varying network framework, which was introduced in an
effort to model human interaction networks more accurately. Mostly, these models
rely on intrinsic activity patterns of individuals and disregard external influences.
However, such external influences are important factors in more complex interaction
scenarios. In this paper, we propose an activity-driven network model by introducing
a peer influence mechanism into the network dynamics. In particular, we allow for
active individuals to motivate their peers to become active as well. We examine the
ramifications of this mechanism on the topological and activity-related properties of
synthetically generated networks and reveal its complex influence on the underlying
dynamics. As expected, our results show that peer influence has positive effects
on formation of network communities. At the same time the changes in activity
patterns suggest a complex response of the system to the peer influence mechanism.
This interesting preliminary result opens interesting avenues for further research in
the future. Our main contributions are (i) the specification of peer influence for an
activity-driven network generator and (ii) the analysis and discussion of the added
peer influence mechanism on synthetic networks.

1 Introduction

On the Web, user behavior typically follows complex dynamics that are hard to
capture. For example, activities, such as writing of e-mails or tweets, are often per-
formed in bursts with long inactive intervals between the bursts [1]. Furthermore, on
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the Web, users are constantly exposed to peer influence. For example, a message on
Twitter can trigger multiple responses, leading to additional activity in the Twitter
network, which would otherwise not occur. Thus, user activity in such online net-
works is a combination of users intrinsic motivation to contribute and external peer
influences.

Our research community has invested tremendous effort to model such activity
dynamics [10, 15, 16, 20]. Among others, modeling approaches based on network
and activity generators have gained a lot of attention in the past. One prominent
example of such models is the activity-driven framework by Perra et al. [15]. This
framework is based on time-varying networks [6] and allows to model activity of
entire networks based on activity potentials—an intrinsic node property, which de-
termines its activity profile. This model was used to study dynamic processes on
networks such as the spreading of diseases [18].

In addition, models capturing and replicating activity patterns are applicable for
various other tasks [17, 20]. For example, Walk et al. [20] investigate and explain
why some online platforms are able to achieve a state of self-sustainability in terms
of user activity, while others fade away due to the inactivity of their user base.

Problem. Currently, there exist several approaches based on activity-driven net-
work generators, which aim to describe user activity patterns as realistic as pos-
sible [10, 12]. All of these models implement the intrinsic activity potential as a
single source of activity in the network. In other words, these models neglect peer
influence. However, to be able to model more complex scenarios, such as activity
in social networks that is directly dependent on actions of other users, we need an
additional and explicit mechanism.

Approach. In our approach, we propose an extension to activity-driven network
generators that introduces external peer effects to the network dynamic simulations.
More specifically, the activation of nodes in our approach is not solely determined
by their intrinsic activity potential, but also by the activations of their neighbors in
the network. As a result, active nodes can motivate their neighbors and increase the
probability of neighbors becoming active as well.

Contributions. The main contribution of our work is the specification of peer in-
fluence as an extension to an activity-driven network generator. Additionally, we
analyze and discuss simulation results on synthetic networks. The experiments high-
light positive effects on the topological structures of the generated networks as well
as effects on the activity patterns of nodes.

2 Related Work

One common way to represent activity patterns is by using a probability distribution
for the intervals between two consecutive activities (i.e., the inter-event time distri-
bution). The model should account for high probabilities of short inter-event times
and a long tail that allows for the longer phases without activity. In general, a power-
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law distribution of the form p(t) ∼ t−γ fulfills these requirements. For example, a
well-known model that follows a power-law distribution is the queuing model [19].

Another straightforward method is a Poisson process to describe the inter-activity
times [1]. In this process events occur independently at a given constant rate and
thus this approach is not able to generate bursty patterns. Several approaches extend
Poisson processes to avoid this issue. For example, Malmgren et al. [11] adopts a
mixture of homogeneous (constant rate) and non-homogeneous (time-varying rate)
Poisson processes to model the e-mail activity of users.

An approach that also captures other patterns of human behavior, such as periodic
spikes, was proposed by Ferraz Costa et al. [3]. Their Rest-Sleep-and-Comment
(RSC) model is based on a self-correlated stochastic process and was the foundation
for a classifier, which is able to detect whether an activity sequence on Reddit was
generated by a bot or by a person with high accuracy.

Another possibility to model user activity is by using Hidden Markov Models
(HMM’s) [16]. The Markov model consists of two hidden states, which describe
the activity state of a user and yields inter-activity times with respect to the current
state. The approach by Raghavan et al. [16] is based on coupled HMM’s and takes
the social network influence of other users into account as well. This is done by
explicitly coupling the stochastic processes and letting the transition probabilities
between states of individual users be dependent on the activity of their friends.

The activity dynamics model [20] and its extension [8] allows to study the de-
velopment of activity in large collaboration networks over longer periods of time. It
highlights the effects of the micro-behavior of users (i.e., their intrinsic activity as
well as the influence on their neighbors) on the macro-behavior of the whole system.

Our work builds upon the activity-driven network framework by Perra et al. [15]
and the community-aware variant of that framework by Laurent et al. [10]. We ex-
tend those frameworks by introducing peer influence effects, such that nodes are
directly able to influence the activity patterns of other nodes in the network.

3 Methodology

3.1 Preliminaries

Activity-driven Time-varying Network Model. The model by Perra et al. [15]
is based on the idea of activity potentials. Each node vi in the network is assigned
a probability to become active ai ∈ [ε,1] in each time step, which is drawn from
a suitable probability distribution f (a). The time-varying network at time t is gen-
erated by first creating a new edgeless network Gt . Then, every node vi becomes
active with probability ai. Finally, active nodes choose another node in the network
uniformly at random and form a link with it. The individual networks Gt are called
instantaneous networks as opposed to an integrated network, which is the union of
all instantaneous networks up to some point in time T .
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Activity-driven Community Extension. Laurent et al. [10] presented a model to
produce adjustable community structures and weight-topological correlations in the
integrated network. These two properties, which are often observed in real-world
networks [4, 14], are generated by changing the way how an active node selects its
communication partners.
MEMORY EFFECTS. By allowing nodes to remember all previous interactions with
other nodes, which are more likely to be repeated, it enables the formation of strong
ties (i.e., interactions that are repeated often) and weak ties (i.e., interactions that are
repeated infrequently). The memory of a node is represented by an edge-weighted
egocentric network that includes all other nodes, which were already part of one or
more interactions in the past. The weight represents the number of previous interac-
tions, and therefore the tie strength.

Depending on the number of neighbors, node vi will either form a new tie or rein-
force an existing one. If ki is the size of egocentric network of vi, the probability for
vi to form a new tie is given by p(ki) = c/(ki + c), where the constant c determines the
memory strength. When an active node vi reinforces an existing tie, the probability
for node v j to be selected as communication partner is given by pi, j = wi, j/∑k∈N(vi) wi,k,
where wi, j denotes the tie strength, and N(vi) is the set of neighbors of node vi. This
reinforcement process allows for the introduction of dependencies between succes-
sive interactions of node pairs.
CLOSURE PROCESSES. The selection of nodes for the formation of new ties is
determined by two closure processes. The first one, cyclic closure [9], assures the
formation of triangles that were linked to the emergence of communities in net-
works [2]. If a node wants to form a new tie, it tries to perform a cyclic closure with
probability p∆ , by interacting with a randomly selected neighbor of a neighbor. The
second one, focal closure [9], emulates homophily of users (i.e., similar users con-
nect to each other). This process is performed whenever a new tie should be created
with a probability of 1− p∆ , or if there are no suitable candidates for a cyclical
closure. This is, for example, the case if a node becomes active for the first time.
NODE DELETION MECHANISM. Additionally, nodes have an intrinsic probability
pd to be removed from the network in every time step. This ensures that the network
can reach a stable state, in which the structural characteristics (e.g., the community
structures) become invariant in time. Every time a node is removed from the net-
work, a new one joins to keep the size of the network constant.

3.2 Peer Influence Extension

In the previous models, each node can become active either (i) by self-initiation, or
(ii) by being contacted by another active node. Activations caused by other nodes
are not necessarily independent of previous events due to memory effects. For ex-
ample, when a node with low activity potential is part of a group of high-activity
nodes with already established strong ties, the other nodes in the group will fairly
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Fig. 1: Illustrative example. The size of the nodes represents their activity poten-
tials and the weights the tie strengths between them. (a) depicts the activation of
a node due to its intrinsic activity potential (green node). This node can now ei-
ther form a new tie or, as shown in (b), reinforce an existing one, which activates
another node as well. These two active nodes have an influence on the activation
probability of their neighbors in the next iteration as shown in (c). The additional
peer-influenced activation probability depends on the tie strength between the nodes
and is depicted as an increase in the node size (red border).

often select the low-active node as communication partner when they become ac-
tive. This mechanism alters the inter-event time distributions of nodes with small
activity potentials. Nevertheless, this type of peer influence is hidden or implicit.

We propose a more explicit way to describe the influence between nodes. We
represent peer influence pi(t) that a node vi receives from its neighbors as probabil-
ity for an activation and calculate it in each iteration step according to the number
of active neighbors in the previous iteration (see Fig. 1). Also, we define pi(t) such
that it depends on the strength of the ties to neighbors.

To that end, we first transform and normalize each weight in the egocentric net-
works of vi using a softmax function: w′i, j = exp(βwi, j)/∑k∈N(vi) exp(βwi,k), where
β is the inverse temperature parameter of the softmax function, which allows for the
modeling of different influence scenarios.

Second, we calculate the weighted fraction of active neighbors αi(t) of node vi
at time t−1: αi(t) = ∑ j∈N(vi) 1{t j=t−1}w′i, j/∑ j∈N(vi) w′i, j, where 1{x} is the indicator
function, which yields 1 whenever the predicate x is true.

Next, we map the weighted fraction of prior active neighbors to a peer influence
probability in the range [0,q], where parameter q is the maximum peer influence. We
define this mapping using a monotonically increasing function. We chose an alge-
braic sigmoid function so that peer influence saturates after some fraction of active
neighbors is reached, limiting the maximum peer influence that can be exercised on
any node at every step in time. Moreover, the peer influence surges noticeable after
some threshold of active neighbors is reached. Hence, the final equation for the peer

influence for a node vi is: pi(t) = (αi(t)q)/
√

α2
i (t)+θ 2, where θ > 0 denotes a

critical threshold, which determines the required fraction of active neighbors to set
the peer influence probability close to its maximum.
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In general, a node can now become active by itself based on its intrinsic activity
potential, or based on the peer influence probability it receives from its neighbors
(i.e., P(vi becomes active at time t) = ai +(1−ai)pi(t)).

4 Experimental Setup

We generate synthetic networks with n = 5,000 nodes over T = 75,000 iterations
and run our experiments 40 times to account for statistical fluctuations. We report
average results.

For our experiments we fix the activity potential distribution to f (a)∼ a−2.7 with
a lower bound of ε = 10−3. This distribution reflects the heterogeneous activity pat-
terns of people well, and is similar to distributions observed in real-world commu-
nication networks [7]. To ensure the formation of adequate community structures in
the network we set p∆ = 0.9 for the triadic closure probability, and pd = 5 ·10−5 for
the node deletion probability. Furthermore, we adopt the memory strength constant
c = 1 so that the probability for the formation of a new tie decays very fast with a
larger egocentric network.

We fix the critical peer influence threshold to θ = 0.1 to reflect the intuition that
a small number of active neighbors is sufficient to affect the activity of a node to a
large extent. Additionally, we adopt the current average tie strength as the tempera-
ture for the softmax weight rescaling. Hence, in each step β is set to the reciprocal
value of average weight in the integrated network and is initialized with β = 1.

We measure the time-dependent topological properties of the integrated network
only for nodes belonging to the temporal network. This implies that nodes deleted
due to the node deletion mechanism do not influence the properties of the integrated
network. Furthermore, we perform the experiments with different values for the
maximum peer influence probability q to examine the effects of peer influence on
the topological and activity-related properties of the generated networks.

Aside from analyzing the integrated network of all 75,000 instantaneous net-
works and its properties we also study the evolution of these networks during the
simulation. This allows us to collect further insights into how the model shapes
communities as well as into the effects of peer influence on the resulting structures.

5 Results & Discussion

5.1 Average Local Clustering Coefficient

We first investigate how the average local clustering coefficient C(t)—a local prop-
erty of a node that measures the cliquishness of its neighborhood [21]—evolves over
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Fig. 2: Average clustering coefficient evolution. Higher values for q (solid lines)
result in stronger peer influence effects. The average clustering coefficient (y-axes)
increases rapidly in the first few hundred iterations (x-axes) until it reaches its max-
imum value. The maximum value of C(t) and the time until it is reached depends
on the degree of peer influence (see inset). After this rapid initial phase, C(t) starts
to relax until it reaches its stationary value. Note that q also affects the time until
convergence.

time. We report the network average of C(t), which indicates the extent and strength
of communities, where higher C(t) means more/stronger community structures.

Findings. The average clustering coefficient is very small in the first few hundred
iterations of our simulations (see Fig. 2), due to the sparsity of the integrated net-
work. However, shortly after this initial phase the clustering quickly increases until
it reaches its maximum between roughly 3,000 and 5,000 iterations. Afterwards,
C(t) begins to decline until the network reaches its stationary state.

Furthermore, the clustering coefficient of networks with higher values for q (i.e.,
where nodes are able to motivate their neighbors to a larger extent) reach higher
peaks of C(t) faster (see inset of Fig. 2). For example, the network in which nodes

Table 1: Clustering characteristics. The maximum value for the average local
clustering coefficient Cmax = maxC(t) and the time to reach the maximum tmax =
argmaxC(t), for different values of q, the maximum peer influence probability. The
proposed peer influence mechanism accelerates the formation and strength of the
community structures in the network.

q 0.00 0.01 0.025 0.05 0.075 0.10 0.15

tmax 5,140 4,919 4,839 5,192 4,173 4,044 3,038

Cmax 0.5659 0.5689 0.5721 0.5773 0.5822 0.5895 0.5963
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are not able to influence their neighbors (q = 0.00) reaches it peak value for C(t)
after approximately 5,000 iterations, while the network with q = 0.15 is more than
2,000 iterations faster. However, the effect only occurs for networks with q > 0.05
and the maximum value of the local clustering coefficient is only slightly higher for
higher levels of peer influence (cf. Table 1).

Fig. 2 also shows an effect on the converged community structures for different
levels of peer influence. This is illustrated by smaller average stationary values for
C(t) for larger q at the end of the simulation (e.g., the last few thousand iterations).

Discussion. At the start of our simulations almost all nodes are disconnected and
the number of triangles is small, compared to the size of the network. The subse-
quent and rapid increase of C(t) is caused by the cyclic closure mechanism and the
emergence of strong ties, which further amplify the biased local search of the cyclic
closure mechanism. However, weak ties are eventually introduced to the network
by the focal closure mechanism. These are rarely involved in the formation of new
triangles, due to their bias towards strong ties, which contributes to the decrease
of C(t) until the network reaches its stationary state [10]. The proposed peer influ-
ence mechanism positively affects the development of topological structures in the
network by increasing C(t) in the beginning of our simulations. Further, peer influ-
ence injects additional activity into the network, which supports the formation of
community structures and, as a direct consequence, influences C(t).

The stationary value of C(t) depends on the node deletion probability pd , as low-
activity nodes, which are not removed fast enough, introduce additional weak ties in
the network [10]. Similar to the deletion probability, our peer influence mechanism
influences the strength of the generated community structures. We can observe that
the more likely an activation is due to peer influence, the smaller the stationary value
for C(t). As the peer influence mechanism increases the activity in the network,
especially in already formed communities, active nodes motivate their neighbors to
become more active as well. Further, note that the probability for the formation of
a new tie is inverse proportional to the size of the egocentric network of a node.
Therefore, an active node, which is already fully integrated in its community, will
reinforce one of its existing ties, or at least close a triangle, with high probability.
However, given enough iterations, such a node will eventually introduce new weak
ties following the focal closure mechanism, so that the introduction of random links
by active nodes increases, which leads to a smaller C(t).

5.2 Inter-event Time Distribution

To examine the impact of the proposed mechanism on the burstiness of the gen-
erated activity patterns we study how the burstiness parameter [5] B changes with
increasing levels of peer influence. B is defined as B = (σ −µ)/(σ +µ), where µ and
σ are the mean and the standard derivation of the inter-event time distribution of
activities ϕ(t), respectively. Hence, it is −1 for regularly occurring events, 0 for
inter-event times that originated from a Poisson process, and 1 for an extremely
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bursty sequence of events. Note that we do not differentiate between different types
of activations (i.e., due to peer-influence, intrinsic activity potential, or by being
contacted by an active node).

Findings. For networks with q = 0.00 the burstiness parameter is B ≈ 0.19. With
larger q we can see larger increases for B (see Table 2). For example, the burstiness
of inter-event time distribution of the network with q = 0.15 is B≈ 0.24.

This increase of B is also reflected in the development of µ—the mean value of
the inter-event time distribution. It declines from about µ = 200 in a network with no
peer influence effects, to approximately µ = 37 in a network with q = 0.15. Thus,
the average time between two consecutive activations of nodes becomes shorter,
favoring the emergence of bursty activation behaviors. Similar to the mean value,
the standard deviation σ of the inter-event time distribution also decreases with
increasing q. Fig. 3 depicts these findings. We observe an increase in probabilities
for short inter-event times with increasing q. For example, the probability for two
consecutive activations of nodes increases by about 20% over the range of possible
values for q. On the other hand, the length of the tail of the distribution decreases,
which is also reflected in the decrease of the standard deviation of ϕ(t).

Discussion. In a network with no peer influence, two consecutive self-activations
are independent of each other. Therefore, activations happen at a certain rate that
is proportional to the activity potential of a node, which leads to exponentially dis-
tributed inter-event times [13] and results in a burstiness parameter that is close
to B = 0. However, due to the memory effects in our proposed model, we receive
different values for B (cf. Table 2) even when q = 0.00. Specifically, the memory
effects foster reoccurring interactions within groups of nodes. Additionally, nodes
with higher intrinsic activity potentials will select nodes from their local group with
high probabilities. Hence, more active nodes activate less active nodes regularly,
which can lead to bursty activity patterns of other nodes, and explains (at least par-
tially) the burstiness value of B= 0.19 with q= 0.00. Our peer influence mechanism
further amplifies this effect, as it increases activity within communities.

Even though we have managed to increase the burstiness in our network in gen-
eral, not all observed effects in the inter-event time distribution are desired for real-

Table 2: Inter-event time distribution characteristics. Mean value µ , standard
deviation σ , and the resulting burstiness parameter B of the inter-event time distri-
bution for varying degrees of the maximum peer influence probability q. The peer
influence mechanism increases the burstiness of activity in the network, also re-
flected in the decrease of µ . However, the decrease in σ indicates that the proposed
peer influence mechanism obstructs further burstiness.

q 0.00 0.01 0.025 0.05 0.075 0.10 0.15

µ 198.71 184.59 164.26 132.80 102.43 76.28 37.23

σ 291.32 270.49 241.40 197.38 155.09 118.04 61.22

B 0.1890 0.1888 0.1902 0.1956 0.2045 0.2149 0.2437
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Fig. 3: Inter-event time distribution. Visualization of the probabilities (y-
axis) of inter-event times t (x-axis) for varying levels of peer influence q =
0, 0.01, 0.05, 0.1, 0.15 in the network. The probabilities for smaller inter-event
times are in general higher and the introduction of the proposed peer influence
mechanism amplifies this characteristic. Furthermore, ϕ(t) is a long-tailed distri-
bution and its length is negatively affected by the peer influence effects. There-
fore, bursts are more probable with increasing levels of peer influence, while longer
phases of inactivity are not.

world activity simulations. The first property of typical human activity patterns—
the possibility for multiple activities in a short period of time (i.e., bursts)—is cap-
tured more accurately with increasing levels of peer influence, due to the increased
probability for small inter-event times. However, the second property of activity
patterns—the opportunity for longer intervals of inactivity—is negatively affected
by the decrease in the length of the tail of ϕ(t). Hence, longer phases of inactivity
become more unlikely with increasing levels of peer influence.

6 Conclusion & Future Work

The main intuition behind our approach is that actions of people on the Web are not
solely based on their intrinsic motivation, but also on the influence of their online
peers. For example, the activity of an individual user in a social network, such as
Twitter, can be affected by the activities of other users in the form of retweets.
This idea stands in contrast to the activity-driven network model, in which nodes
can become active only based on their inherent activity potential. The introduction
of the peer influence adaption resolves a number of important issues, such as the
quantification of the influence of neighbors in the egocentric network of a node,
or the determination of the relative influence of individual neighbors based on tie
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strengths. We see such aspects as the main contribution of our approach with respect
to modeling activity in networks of user interactions.

After specifying the model1 we analyzed and showcased its functionality and
parametric evolution on synthetic networks. This includes an examination of the
effects on the topological structures of networks, which showed that peer influence
does accelerate the formation of community structures and their strength. Additional
investigations revealed that (i) activation patterns of individual nodes are affected
by peer influence, and (ii) the distribution of time intervals between two consecutive
activations changes in a way that allows for increased burstiness, which is a defining
property in human activity patterns.

However, while the probability for short breaks between activations increased
with more prominent peer influence effects, the length of the tail of the inter-event
time distribution decreased, restricting the possibilities for longer intervals between
bursts, which might occur due to a badly fitted peer influence parameter q. On the
one hand, with q set too low, activity is not noticeably affected. On the other hand,
with q set too high, peer influence becomes too dominant and leads to bursts within
communities that are frequently repeated. One potential solution would be to intro-
duce memory effects for q, so that nodes cannot be easily influenced multiple times
within a short period of time (i.e., a cool-down time for the effect).

Other ideas for future work include the introduction of negative peer effects in our
model, which reduces the activity of nodes and could be used to study the presence
of trolls in networks, or to apply the model to study dynamic processes on networks
(e.g., disease spreading) with respect to peer influence effects.
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