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Abstract. Ontologies are complex intellectual artifacts and creating them re-
quires significant expertise and effort. While existing ontology-editing tools and
methodologies propose ways of building ontologies in a normative way, empirical
investigations of how experts actually construct ontologies “in the wild” are rare.
Yet, understanding actual user behavior can play an important role in the design of
effective tool support. Although previous empirical investigations have produced a
series of interesting insights, they were exploratory in nature and aimed at gauging
the problem space only. In this work, we aim to advance the state of knowledge in
this domain by systematically defining and comparing a set of hypotheses about
how users edit ontologies. Towards that end, we study the user editing trails of four
real-world ontology-engineering projects. Using a coherent research framework,
called HypTrails, we derive formal definitions of hypotheses from the literature,
and systematically compare them with each other. Our findings suggest that the
hierarchical structure of an ontology exercises the strongest influence on user
editing behavior, followed by the entity similarity, and the semantic distance of
classes in the ontology. Moreover, these findings are strikingly consistent across
all ontology-engineering projects in our study, with only minor exceptions for one
of the smaller datasets. We believe that our results are important for ontology tools
builders and for project managers, who can potentially leverage this information
to create user interfaces and processes that better support the observed editing
patterns of users.

1 Introduction

Large real-world ontologies are intellectual artifacts that are inherently complex and
hard to build. Most such ontologies are found in the biomedical domain. For example,
SNOMED-CT,5 a comprehensive clinical health terminology, has over 300,000 classes,
the National Cancer Institute Thesaurus (NCIT)6 has more than 100,000 classes, and the

5 http://www.ihtsdo.org/snomed-ct
6 http://ncit.nci.nih.gov
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11th revision of the International Classification of Diseases (ICD-11)7 has over 50,000
classes. The development of such large ontologies usually takes place in distributed
teams, and requires a significant effort both in the ontological modeling and coordination
of the entire process.

One of the biggest challenges in developing large real-world ontologies is proper
tool support. While existing ontology-editing tools and methodologies prescribe certain
ways of building ontologies, there is very little research on how users actually use these
tools. Empirical analyses of how users develop ontologies “in the wild” are very rare.
We address this gap with this paper, by aiming to broaden our understanding of editing
behaviors in large ontology-engineering projects. It is the ultimate vision of our work to
lay a more solid foundation for creating tools that better support ontology authors based
on their actual authoring behavior.

We define a sequential edit trail as a chronologically sorted list of all actions a user
takes while editing an ontology. We derive such editing trails from the change logs
recorded by the ontology-editing tools. In previous work, we have conducted exploratory
empirical analyses of various types of edit trails in several ontology-engineering projects
[21, 22], and we have discussed our findings and potential implications [23]. In these
works, we have been able to explore different editing patterns and potential explanations
via manual inspection and qualitative interpretation. For example, we have speculated
that users edit ontologies in a top-down fashion or that users navigate along similar
concepts. However, it is still unclear how such hypotheses can best be expressed formally,
or how they can be systematically compared with each other in order to explain the
production of edit trails, and hence an ontology, at hand.

Thus, in this paper, we systematically investigate previous, mostly exploratory,
results using HypTrails [11]—a generic methodology for comparing hypotheses about
human trails in ontology-engineering projects. This allows us to (i) formally define, (ii)
systematically study, and (iii) rank different hypotheses about ontology-editing behavior
within a coherent research framework. By using HypTrails, we approach this problem
by modeling edit trails as first-order Markov chains (see Section 3.2) and hypotheses
as priors. From our analyses, we find that the hierarchical structure of an ontology
exercises the strongest influence on observed user behaviors, followed by the similarity
of entities, and the distance of classes in the ontology. These findings are strikingly
consistent across the four real-world ontology-engineering projects used in our study,
with only minor exceptions for one of the smaller datasets. We believe that our results
are important for ontology tools builders and for project managers, who can potentially
leverage this information to create user interfaces and processes that better support the
observed editing patterns of users.

The main research contributions of this work are:

– A formal way to define hypotheses about how users edit an ontology (e.g., top-down
vs. bottom-up editing strategies).

– A detailed systematic comparison of such hypotheses across four real-world ontology-
engineering projects.

– A ranking of all investigated hypotheses according to their relative plausibility for
each dataset by adopting a coherent research approach.

7 http://who.int/classifications/icd/revision/en/
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The remainder of the paper is structured as follows: In Section 2, we discuss the
related work. The methodology and datasets are described in Section 3, followed by a
detailed formal description of all investigated hypotheses in Section 4. We present the
results of our analysis in Section 5, discuss implications and limitations of our findings in
Section 6 and conclude our work and discuss opportunities for future work in Section 7.

2 Related Work

The related work relevant for this paper is covered by two different research fields:
Human Trails on the Web and Analysis of Ontology Editing Behavior.

2.1 Human Trails on the Web

Previous research has studied human trails on the Web in various settings. Modeling trails
has received a lot of attention [3, 12], as well as the detection of regularities, patterns
and strategies in trails of interest [6, 25]. Most prominently, researchers have focused
on studying human navigational trails on the Web—capturing the subsequent websites
that humans navigate to [6, 12, 25]. This research on navigational trails has inspired
other works in the effort to improve the Web, e.g., better website design (usability) [4],
identifying related links [18] or constructing an e-learning Semantic Web [2]. Researchers
have also investigated other kinds of human trails, e.g., search trails [13, 26], diffusion
trails [1] or song listening trails [11]. Our work directly connects to these studies as
we are interested in shedding more light on the production of human trails on the Web;
however, in our case, we look at human edit trails in ontology-engineering projects by
using the approach presented in [11].

2.2 Analysis of Ontology Editing Behavior

In this line of research, a large part of the literature has focused on analyzing the
editing behavior or identifying editing patterns in collaborative ontology-engineering.
To perform these types of analyses, researchers have used the change logs recorded by
the different ontology-editing environments, similar to our approach.

Strohmaier et al. [14] conducted an empirical analysis to investigate the hidden social
dynamics that take place when editors develop an ontology, and provided new metrics to
quantify various aspects of the engineering processes. Falconer et al. [5] did a change-log
analysis of different ontology-engineering projects, showing that contributors exhibit
specific roles, which can be used to group and classify these users. Pesquita and Couto [9]
analyzed the influence of the location and specific structural features to determine if
and where the next change will be conducted in the Gene Ontology8. The work by
Wang et al. [24] presents an analysis of user editing patterns derived from change logs
of several real-world ontology-engineering projects utilizing association-rule mining.
The results suggest that users tend to edit in a vertical way, i.e., users edit the same
properties for different classes in a sequential way. Rospocher et al [10] analyzed the

8 http://www.geneontology.org
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change logs for two different Web-based collaborative ontology-editing tools and found
similar collaboration and editing patterns. For example, they found that users tend to edit
in the local neighborhood of an entity. Van Laere et al. [19] analyzed behavior-based
user profiles in collaborative ontology-engineering projects using K-means clustering to
group similar users.

In contrast to our previous research [21–23], this work represents a systematic and
comparative study of different hypotheses in a coherent mathematical research frame-
work, whereas our previous analyses have mostly been exploratory. We can thereby—for
the first time—make relative, empirically grounded statements about the plausibility of
different hypotheses given data.

3 Materials & Methodology

We present the four datasets used in our research (Section 3.1), and the HypTrails
framework (Section 3.2) that forms the basis of the methodology used in this work.

3.1 Datasets

We used the change logs of four real-world ontology-engineering projects to conduct
the analyses presented in this work. These projects use WebProtégé [17] as the editing
platform, a Web-based generic ontology-editing tool, which records a log of all changes
performed by each user. Each change record stores metadata about the change, such as
the user who performed the change, a textual description of the change, the timestamp,
and the entity on which the change occurred.

To extract the editing trails from the change logs, we performed a pre-processing
step in which we merged consecutive changes on the same entity by the same user (i.e.,
self-loops) into one change. Such changes occurred when users would edit different
properties of the same entity. For the purpose of this work, we have not been interested
in such changes, but rather in the ones which occurred on different entities. Further,
we have limited all our analyses on isA relationships and removed equivalence links.
However, multiple isA inheritances have been kept “as-is”. We provide a brief description
of the four datasets used in our research below.
The International Classification of Diseases (ICD),9 developed by the World Health
Organization (WHO), is the international standard for diagnostic classification used to
encode information relevant to epidemiology, health management, and clinical use in
over one hundred United Nations countries. WHO regularly publishes new revisions
of the classifications. The 11th revision of the classification, ICD-11,10 is currently
in progress, and is planned to be finalized in 2017. In contrast to previous revisions,
ICD-11 is developed as a rich OWL ontology [16]. Over 100 domain experts are using a
customized version of WebProtégé to author the ontology collaboratively.
The International Classification of Traditional Medicine (ICTM)11 is a WHO-led
project that aimed to produce an international standard terminology and classification

9 http://who.int/classifications/icd/en/
10 http://who.int/classifications/icd/ICDRevision/
11 http://who.int/mediacentre/news/notes/2010/trad_medicine_20101207/en/
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for diagnoses and interventions in Traditional Medicine. ICTM was developed collabora-
tively as an OWL ontology with the goal to unify the knowledge from the traditional
medicine practices from China, Japan and Korea. Its content is authored in 4 languages:
English, Chinese, Japanese and Korean. More than 20 domain experts from the three
countries developed ICTM using a customized version of WebProtégé. The development
of ICTM ended in 2012.

The Biomedical Resource Ontology (BRO) [15] was developed as part of the Biositemaps
project. Biositemaps is a mechanism for researchers working in biomedicine to publish
metadata about biomedical data, tools, and services. Applications can then aggregate
this information for tasks such as semantic search. BRO is the enabling technology used
in Biositemaps; a controlled terminology for describing the resource types, areas of
research, and activity of a biomedical related resource. A small group of editors authored
BRO using WebProtégé to modify the ontology and to carry out discussions.

The Ontology for Parasite Lifecycle (OPL) models the life cycle of the T.cruzi, a
protozoan parasite, which is responsible for a number of human diseases [8]. OPL
uses expressive OWL (SHOIF) to represent its knowledge base, and extends several
other OWL ontologies. Several users from different institutions collaborate on OPL
development using WebProtégé as a collaborative platform.

Table 1 provides some characteristics about each of the datasets used in our analysis.
The average trail length ranges from 1,637.13 transitions for ICD-11 to 136.60 transi-
tions for BRO. Trails refer to the number of different human edit trails per dataset, where
each trail represents a chronologically ordered list of all the classes a user has edited.
Users with less than 2 distinct changes have been removed from our analysis.

Table 1. Characteristics of the four datasets.

ICD-11 ICTM BRO OPL
Classes 48,771 1,506 528 393
Changes 439,229 67,522 2,507 1,993
Users 109 27 5 3
Trails 102 26 5 3
Avrg. trail length 1,637.13 673.54 136.60 152.00
Transitions 361,491 66,708 2,388 2,668
Self-Loops 194,504 49,196 1,705 2,212
First change 18.11.2009 02.02.2011 12.02.2010 09.06.2011
Last change 29.08.2013 17.7.2013 06.03.2010 23.09.2011
Period (ca.) 4 years 2.5 years 1 month 3 months

3.2 Methodology

By and large, HypTrails [11] is an approach that allows us to compare hypotheses about
human trails. In our case, we are interested in studying: (i) the human edit trails in
ontology-engineering projects, and (ii) the relative plausibility of hypotheses about the
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production of these trails that have been manifested in previous studies. In Section 1,
we used the hypothesis that users edit ontologies in a top-down manner as an example.
Using HypTrails, we are able to compare this hypothesis to other such hypotheses, and
determine which one is more plausible to describe the production of the corresponding
editing trails, and hence the ontology at hand. Section 4 provides a formal description of
all hypotheses that we have compared as part of this research. Figure 1 shows a graphical
representation of the editing patterns represented by each hypothesis. Next, we introduce
the core concepts of HypTrails; for a more thorough introduction please refer to [11].

Technically, HypTrails models trails with first-order Markov chain models, and
compares hypotheses using Bayesian inference, and more specifically, the marginal
likelihood which can also be referred to as the evidence (we use both terms throughout
this work synonymously). The marginal likelihood P(H|D) describes the probability
of a hypothesis H (e.g., uniform hypothesis) given the data (trails). For expressing
generic hypotheses and being able to compare them, HypTrails uses the sensitivity of the
marginal likelihood on the prior. Thus, hypotheses are expresses as different priors—in
case of a Markov chain model the conjugate prior is the Dirichlet distribution. The
hyperparameters of Dirichlet distributions can be interpreted as pseudo counts. Thus,
simply put, higher pseudo counts refer to higher beliefs in corresponding transition for a
given hypothesis.

Consequently, we have to provide HypTrails with matrices that capture our generic
hypotheses and corresponding beliefs in transitions (see Section 4). Based on these
matrices, HypTrails internally elicits proper Dirichlet priors for given hypotheses by
setting the pseudo counts accordingly, based on a parameter k which steers the total
number of pseudo counts assigned. Basically, the higher we set k, the stronger we believe
in a given hypothesis. Analogously, this means that with higher k, we expect to see less
transitions contradicting the corresponding hypothesis (e.g., only transitions from higher
level classes to lower level classes in the top-down hypothesis). For fairness, we always
want to compare hypotheses with each other for the same values of k.

Finally, by using different priors for different hypotheses, we get different marginal
likelihoods when combined with empirical trail data. Based on these evidences, we
can compare the relative plausibility of hypotheses—higher evidences indicate higher
plausibility. In theory, we need to further calculate Bayes factors [7] between the marginal
likelihoods of two hypotheses, so that we would be able to judge the strength of the
evidence for one hypothesis over the other. However, as all Bayes factors are decisive,
we resort from presenting them individually throughout this paper. Thus, we can produce
a partial ordering of hypotheses based on their relative plausibility by ranking their
marginal likelihoods from largest to smallest for single values of k.

4 Hypotheses

HypTrails allows us to compare hypotheses about the production of human edit trails
in ontology-engineering projects, and helps us to understand how an ontology is pro-
duced in an ontology-development tool. Hypotheses are beliefs about transitions (see
Figures 1(a)–1(h)) opposed to actual empirical transitional observations (see Figure 1(i)).
With HypTrails, we express these transitional beliefs as our assumptions about Markov
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Fig. 1. Sample-Hypotheses. This figure depicts eight hypotheses about how humans consecutively
edit classes in ontology-engineering projects derived from our previous research (a-h), as well
as empirical observations (i). The curved arrows represent transitions we believe in for a given
hypothesis (a-h), or observed transition probabilities from data (i). The thicker an arrow, the higher
our belief in the corresponding transition for a given hypothesis (a-h), or the higher the number of
transitions we observed in the data (i). For simplicity, we always only visualize the transitions for
class C; all other classes follow analogously.
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chain transitions. In detail, we specify hypotheses as matrices that reflect our assumptions
about transitions between states where higher values correspond to higher beliefs.

Thus, for each hypothesis, we need to specify the hypothesis matrix Q with elements
qi, j that represent the belief in the transition between states si and s j. A state corresponds
to a class in the ontology that users are editing. A transition between states si and s j
corresponds to a two sequential user edit: first of the class represented by si, and then
of the class represented by s j. In order to express our hypotheses as beliefs in Markov
transitions, and to have a better interpretation capability, we directly set qi, j as row
probabilities P(s j|si). Thus, for each row i of Q it holds that ∑ j qi, j = 1.

For example, Figure 1(e) depicts the hierarchy-based hypothesis, which postulates
the belief that users are likelier to edit classes along the hierarchical (isA) structure of the
ontology and the shortest distance. In this example, if a user has just previously changed
class C, this hypothesis believes that the user is most likely to change class A (the parent)
or G (the child) next. Classes B and D are both siblings (and two steps away) of C, which
is why this hypothesis expresses a smaller belief in these transitions. Other hierarchical
transitions, ancestors, descendants and cousins, follow analogously with less belief (i.e.,
lower proabability; not depicted in Figure 1(e)).

Figure 2 shows an exemplary illustration of the transition graph and the correspond-
ing matrix for the top-down hypothesis, which believes that users consecutively edit
classes at deeper levels in the hierarchy. In this example, our state space consists of seven
classes S = {A,B,C,D,E,F,G}. The beliefs in the transitions between states are shown
in Figure 2(a). As this hypothesis has stronger beliefs in top-down transitions, the graph
and matrix will only contain beliefs in transitions from higher-level classes to lower-level
classes, such as, from C to E, F and G. Figure 2(b) shows the corresponding representa-
tion of the beliefs in the hypothesis matrix. For example, for the row corresponding to
the transitions from class C, we may set qC,E = 1/3, qC,F = 1/3 and qC,G = 1/3. For all
other classes, we can proceed analogously.

In the remainder of this section, we thoroughly describe the hypotheses used in this
research, and provide formal descriptions of how we built the corresponding hypothesis
matrices Q. Note that for each hypothesis and equation, we always calculate qi, j, for
all i and j. We set the diagonal of each hypothesis matrix Q to 0 as we do not consider
self-loops in our data. As it is not always possible to express our beliefs with direct
probabilities, we additionally normalize each row of Q using the `1-norm.

Figure 1 shows a graphical representation of the hypotheses investigated in our
research. The top-down, bottom-up, breadth-first and hierarchy hypotheses resulted
as part of our prior research from a manual inspection of Markov chains of different
orders [21–23]. Additionally, we are also considering the shortest path, connectivity,
and similarity hypotheses to also investigate further “strategies” of how users edit an
ontology that could provide plausible explanations for the underlying data.

Uniform hypothesis. This hypothesis believes that each transition from one state to any
other state is equally likely (cf. Figure 1(a)). Thus, it assumes that humans edit ontologies
at random. We can see this hypothesis as a baseline. If other hypotheses are not more
plausible than this uniform one, we cannot expect them to provide good explanations
about the production of the trails (and the ontology) at hand. The elements of matrix Q
for this hypothesis are defined as follows:
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qi, j =
1

|S−1|
(1)

Top-down hypothesis. For the top-down hypothesis, we express the belief that classes
that are deeper in the hierarchy (further away from the root class) than the previously
edited class, are likelier to be changed next. For expressing this hypothesis, we measure
the depth level of each class (the distance to the root); classes deeper in the hierarchy
have larger depth levels. In this hypothesis, we have stronger beliefs in transitions to
classes that have a larger depth level than the current class (cf. Figure 1(b)). We express
this hypothesis according to the following definition with depthi and depth j representing
the depth-levels of the corresponding classes si and s j.

qi, j =

{
1, if depthi < depth j,

0, otherwise.
(2)

Bottom-up hypothesis. Analogously to the top-down hypothesis, this hypothesis be-
lieves that classes that are closer to the root class (i.e., they have lower depth levels) than
the previously edited class, are likelier to be changed next (cf. Figure 1(c)).

qi, j =

{
1, if depthi > depth j,

0, otherwise.
(3)

Breadth-first hypothesis. Similar to the top-down and bottom-up hypotheses, we ex-
press the belief that classes are likelier to be changed next, if they are on the same depth
levels (cf. Figure 1(d)).
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qi, j =

{
1, if depthi = depth j,

0, otherwise.
(4)

Shortest path hypothesis. With this hypothesis, we express the belief that users con-
secutively edit classes in an ontology that are close to each other in the class hierarchy
(cf. Figure 1(f)). In detail, we look at the shortest path distances d(i, j) between pairs of
classes—the shorter the distance, the stronger we believe in the corresponding transition.
To invert the shortest path length, we subtract it from the diameter maxx,y(d(x,y)) of the
whole hierarchy.

qi, j = max
x,y

(d(x,y))−d(i, j) (5)

Hierarchy hypothesis. The hierarchy hypothesis represents our belief that users edit
classes along the hierarchical structure of the ontology (i.e., isA links). In particular, the
next edit operation is likelier to occur on close relatives than on relatives that are further
away (cf. Figure 1(e)). This hypothesis has the following weight initialization of our
belief matrix:

qi, j =



4, if d(i, j) = 1 and depthi 6= depth j,

3, if d(i, j) = 2 and depthi = depth j and check siblings(i, j)> 0,
2, if d(i, j) = 4 and depthi = depth j and check cousins(i, j)> 0,
1, if sp(i, j) = |depthi−depth j|,
0, otherwise.

(6)

Where sp(i, j) is the shortest path between pairs (i, j). It holds that check siblings(i, j) =
|parents(i)∩ parents( j)| and check cousins(i, j)= |grand parents(i)∩grand parents( j)|.
Hence, both functions are larger than zero, if classes i and j share at least one parent or
grandparent, respectively.
Connectivity hypothesis. In this hypothesis, we believe that the next edit operation
will likelier occur on a class that is better connected in the class hierarchy. We define
the connectivity level of a class as the number of isA relationships a class has to and
from other classes. We represent the connectivity level of class j as k j. The higher the
connectivity level of a class, the higher our belief in a given transition (cf. Figure 1(g)).
Note that for this hypothesis, each row of Q is the same—it can be seen as a zero-order
Markov chain hypothesis that is weighted by the connectivity of nodes.

qi, j = k j (7)

Similarity hypothesis. In this hypothesis, we believe that transitions between similar
classes are likelier to occur than between less similar classes (cf. Figure 1(h)). To
calculate the similarity between classes i and j, we first generate tf-idf vectors, vi and v j,
consisting of the values of the annotation properties corresponding to the label of a class,
and the textual definition. Using these tf-idf vectors, we compute the cosine similarity
between classes.
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Fig. 3. Hypotheses ranking. Results for comparing hypotheses for the four datasets using Hyp-
Trails. The x-axes represent the hypothesis weighting factor k representing the “strength” of our
belief in a hypothesis. In general, the stronger we believe in a hypothesis (i.e., the higher we set k),
the less we expect to see transitions opposing the parametric beliefs of the corresponding hypothe-
sis. The y-axes depict the Bayesian evidences. The higher the evidence for a given hypothesis, the
better it is suited for describing the production of the extracted human edit trails (see Section 3).

qi, j = cos sim(vi,v j) (8)

cos sim(vi,v j) is the cosine similarity between the tf-idf vectors of the property values
corresponding to the labels and textual definitions of classes i and j.

5 Results

By applying HypTrails, we are able to gain insights into the relative plausibility of the
hypotheses of interest based on the empirical data at hand. We illustrate the results in
Figure 3. As mentioned in Section 3, we can compare the plausibility of hypotheses by
comparing their marginal likelihoods—the higher, the more plausible. The hypothesis
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weighting factor k describes the “strength” of our belief in a given hypothesis; for fairness,
we compare the plausibility of hypotheses by comparing their Bayesian evidences for
the same values of k. For tractability, we report and interpret results for 0 <= k <= 4;
for higher values of k the results might slightly vary. Next, we highlight the main results
for each ontology-engineering project (see Table 2 for a comparison of all hypotheses
and datasets). We thoroughly discuss the results in Section 6.

International Classification of Diseases (ICD-11). The results for ICD-11, our biggest
dataset, are depicted in the top-left part of Figure 3. The top-down and bottom-up
hypotheses indicate lower evidences than the uniform hypothesis, suggesting that users
are likelier to randomly change classes in the ontology than strictly follow a top-down or
bottom-up approach. The connectivity hypothesis starts out to be nearly as plausible as
the uniform hypothesis, but looses in Bayesian evidence faster with increasing k. The
breadth-first and shortest-path hypotheses indicate higher evidences than the uniform
hypothesis for our k > 0 at interest and thus, seem to be plausible explanations for the
creation of the given human edit trails. Clearly, for ICD-11, the hierarchy hypothesis
represents the most plausible explanation for the production of the trails, and thus the
ontology at hand, followed by the similarity hypothesis.

International Classification of Traditional Medicine (ICTM). Similarly to ICD-11,
the top-down, bottom-up and connectivity hypotheses exhibit lower evidences than the
uniform hypothesis for all analyzed values of k > 0 (see top-right part of Figure 3). Ac-
cording to our experiments, the most plausible hypothesis for explaining the production
of the edit trails of ICTM is the hierarchy hypothesis as it exhibits the highest Bayesian
evidences for all k > 0. Further, the similarity hypothesis, as well as the breadth-first
and shortest path hypotheses, are also better suited for describing the production of
the human edit trails in ontology-engineering projects than the uniform hypothesis. For
k > 2, we can also observe that the shortest-path hypothesis is increasing in plausibility
and takes over the breadth-first hypothesis at k = 4.

Biomedical Resource Ontology (BRO). For BRO, the hypothesis with the highest
Bayesian evidences for k > 0 is, again, the hierarchy hypothesis. Similarly to ICTM, the
connectivity, top-down and bottom-up hypotheses are less plausible for explaining the

Table 2. Results. The table depicts the relative ranking of each hypothesis for the corresponding
datasets at k = 4. The best performing hypotheses are highlighted bold-face. If a hypothesis is less
likely to explain the production of the corresponding edit trails than the uniform hypothesis, we
have marked them with “-” for the corresponding dataset.

ICD-11 ICTM BRO OPL
Hierarchy Hypothesis 1 1 1 1
Similarity Hypothesis 2 2 3 2
Shortest Path Hypothesis 3 3 2 3
Breadth-First Hypothesis 4 4 - 4
Uniform Hypothesis 5 5 4 5
Connectivity Hypothesis - - - -
Bottom-Up Hypothesis - - - -
Top-Down Hypothesis - - - -
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production of the human edit trails in ontology-engineering projects than the uniform
hypothesis. In contrast to ICD-11 and ICTM, the similarity hypothesis is less likely
to be a plausible explanation for the trails than the shortest path hypotheses. Further,
the shortest path hypothesis gains evidence with growing k, while the breadth-first
hypothesis drops below the uniform hypothesis at k = 4.
Ontology for Parasite Lifecycle (OPL). Similarly to all other projects, the most plausi-
ble hypothesis for explaining the production of the trails at hand for OPL is the hierarchy
hypothesis, followed by the similarity hypothesis (especially for higher k). The top-down,
bottom-up and connectivity hypotheses are again, less plausible than the uniform hy-
pothesis at k > 0. Analogously to ICTM, the breadth-first and shortest path hypotheses
are more plausible for explaining the creation of the human edit trails than the uniform
hypothesis, and switch ranks with growing k.

6 Discussions

The results of comparing the different hypotheses for the four datasets with HypTrails
are surprisingly consistent. In all of the four ontology-engineering projects, the hierarchy
hypothesis represents the most plausible hypothesis to explain the production of the
human edit trails in ontology-engineering projects, and therefore the corresponding
ontology at hand. The similarity hypothesis is the second most plausible hypothesis for
explaining the production of the human edit trails in ontology-engineering projects for
ICD-11, ICTM and OPL (at k = 4). The reason for the high Bayesian evidences of the
similarity hypothesis is most probably due to the fact that (semantically) similar classes
are usually grouped into the same parts of an ontology, hence the similarity calculations
are likely to reflect our beliefs of the hierarchy hypothesis. For example, in a biomedical
ontology, similar classes are grouped together as siblings or cousins, sharing at least
one common parent or grandparent among them. Hence, additional adaptions to further
distinguish the similarity hypothesis from the hierarchy hypothesis are warranted. In
particular, we plan on investigating correlation between the similarity of classes and
existing hierarchical links in future work.

In Walk et al. [23], we have been arguing that users are editing the ontology in a
combined top-down and breadth-first fashion. The results of our analysis confirm the
results from our exploratory analysis. In particular, the hierarchy hypothesis emphasizes
transitions along top-down and breadth-first hierarchical relations (i.e., children, siblings
and cousins opposed to uncles and aunts). This finding is also supported by the empirical
research conducted by Vigo et al. [20], which shows that the class hierarchy is the central
focus of user activity in an ontology-editing session. Users spend more than 45% of their
time navigating or editing the class hierarchy, which serves as an index and external
memory of the ontology. The authors have identified the class hierarchy as the central
component of the user interface, which also explains very well our findings.

Thus, these observations reinforce our initial belief that the ontological hierarchy
influences the selection of which class to edit next. Among other potential scenarios,
this information can be leveraged by ontology-engineering tools creators to minimize
the efforts required by users to create new, or edit existing content in an ontology. For
example, ontology-editing tools may visually highlight the corresponding classes in the
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user interface, and provide keyboard shortcuts that allow for quicker and more productive
editing sessions. Vigo et al. [20] also make the recommendation to place editing features
close to the class hierarchy to better support the users in their editing patterns.

In our investigations, we have also identified hypotheses that were weak, and poten-
tially not useful for the purpose of improving the user interface or editing process: the
top-down, bottom-up and connectivity hypotheses are less plausible than the uniform
hypothesis, meaning that randomly selecting classes to work on is likelier to produce the
corresponding edit trails than specifically editing highly connected classes, or editing
classes in a top-down or bottom-up fashion.

Our study also has limitations, for example, all investigated ontologies are authored
with the same tool, WebProtégé (or its customizations), which may biases some of our
findings. However, we believe that the bias is attenuated by the fact that the projects are
completely different efforts by different teams, and they also use different customizations
of the user interface. Furthermore, Rospocher et al. [10], who have analyzed the change
logs of two different ontology-editing platforms (WebProtégé and a Wiki system), have
come to the conclusion that users tend to edit around the hierarchy, indifferent of the
tool that they used. One difficulty in overcoming this limitation is the fact that obtaining
change logs for real-world projects from different platforms is almost impossible. An-
other limitation is the fact that HypTrails focuses on comparing the relative plausibility
of hypotheses. Hence, we can say that the hierarchy hypothesis is the most plausible
one for explaining the production of the edit trails at hand. However, we do not know if
another hypothesis, other than the ones compared, is more plausible than the hierarchy
hypothesis. For example, calculating the actual transition probabilities directly from
the trails yields highest Bayesian evidences. However, understanding and interpreting
this empirical “hypothesis” is very hard. Also, to be able to conduct an analysis using
HypTrails, we need to have detailed change-tracking information, which WebProtégé
provides, but might not be as easily obtained for other projects and tools.

7 Conclusions

In this paper, we have formally defined several hypotheses of how users edit an ontology,
and systematically investigated, analyzed, and ranked these hypotheses according to their
relative plausibility for describing edit trails of four real-world ontology-engineering
projects using HypTrails, a coherent research approach. We have found that the hierar-
chical structure of an ontology exercises the strongest influence on the observed user
behavior, followed by the similarity of concepts. These findings are remarkably consis-
tent across four different real-world projects, with some minor exception for the BRO
dataset. We have also discussed how these findings may be used to improve ontology-
editing tools. We think that our findings represent an advancement of the empirical
research on how ontologies are created, which is a field that has been chronically lacking
in our community.

We believe that the insights, uncovered in this paper, into how users actually edit
real-world ontologies, represent a great opportunity for ontology-tools builders and for
project managers, who can potentially leverage this information to create user interfaces
and processes that better support the editing patterns of the users.
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For future work, we plan to extend our set of formally defined hypotheses by includ-
ing theories on how users edit properties (current work only considers class-based trails)
and include different types of relationships for the analyses presented in this paper. In
particular, studying individual (clustered) user behavior to automatically detect subsets
of users that behave differently to other subsets of users represents a very promising op-
portunity for future work. On the longer term, we would like to create a recommendation
module for ontology-editing tools, which would be informed by the editing patterns that
we identify through our empirical research. We believe that the recommendation module
and an adapted user interface will vastly improve the editing experience of the users.
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