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Abstract

With the growing popularity of large-scale biomedical collaborative ontology-engineering projects, such as the creation of the
11th revision of the International Classification of Diseases, new methods and insights are needed to help project- and community-
managers to cope with the constantly growing complexity of such projects. In this paper we present a novel application of Markov
Chains on the change-logs of collaborative ontology-engineering projects to extract and analyze sequential patterns. This method
also allows to investigate memory and structure in human activity patterns when collaboratively creating an ontology by leveraging
Markov Chain models of varying orders. We describe all necessary steps for applying the methodology to collaborative ontology-
engineering projects and provide first results for the International Classification of Diseases in its 11th revision. Furthermore,
we show that the collected sequential-patterns provide actionable information for community- and project-managers to monitor,
coordinate and dynamically adapt to the natural development processes that occur when collaboratively engineering an ontology.
We hope that the adaption of the presented methodology will spur a new line of ontology-development tools and evaluation-
techniques, which concentrate on the interactive nature of the collaborative ontology-engineering process.
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1. Introduction

With the increasing popularity of structured data within the
last years many large-scale projects were launched with a set
goal to collaboratively engineer ontologies. For example, the
World Health Organization (WHO) is maintaining the collab-
orative online-development of the new revision of the Interna-
tional Classification of Diseases (ICD), which represents a very
important classification scheme that is used in many countries
around the world. Wikidata1, another collaborative ontology-
engineering project initiated by the Wikimedia Foundation2, is
gathering structured data in multiple languages to link to and
between Wikipedia and its different language editions, also in-
cluding links to and between other projects from the Wikime-
dia Foundation. To anticipate the new requirements attached to
this collaborative approach, researchers have analyzed and de-
veloped new ontology-engineering tools, such as Collaborative
Protégé and WebProtégé [1, 2], which not only provide a col-
laborative environment to engineer ontologies but also mech-
anisms that are targeted towards augmenting collaboration and
increasing the overall quality of the resulting ontologies by sup-
porting contributors in reaching consensus. For user-interface
designers, community managers as well as project administra-
tors analyzing and understanding the ongoing processes of how

1http://www.wikidata.org
2http://wikimediafoundation.org

ontologies are engineered collaboratively is crucial. When pro-
vided with detailed and quantifiable insights, the used ontology-
engineering tools or even the development-strategy can be au-
tomatically revised and adjusted accordingly. For collaborative
ontology-engineering projects with large numbers of involved
users in particular, researchers will have to find new ways of
anticipating yet unknown problems while simultaneously rein-
forcing the benefits attached to the collaborative nature of these
projects. Especially when keeping in mind that engineering an
ontology by itself already represents a complex task, which be-
comes even more complex when adding a layer of social in-
teractions on top of the development process. In the light of
these challenges, we need new methods and techniques to bet-
ter understand and measure the social dynamics and processes
of collaborative ontology-engineering efforts.

When users collaboratively engineer ontologies several user
actions succeed each other. For example, a user sequentially
changes properties of a concept in the ontology which results in
a sequence of properties (and concepts) the user works on. Bet-
ter understanding such sequential processes can severely help
system designers to e.g., increase the quality of an ontology or
contributor satisfaction. To come back to our previous exam-
ple, if we better understand the process better of how users se-
quentially edit properties of concepts, we can e.g., recommend
users the next property they potentially might want to edit or the
other way around, steer users away from their typical behavior
in order to also cover niche parts of the ontology. From litera-
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ture we already know, that sequential patterns of human actions
usually can be well predicted. E.g., Song et al. [3] showed that
human mobility patterns are predictable and the authors also
hypothesize that all human activities contain certain regulari-
ties that can be detected which might also apply to our ontol-
ogy usage sequences of interest. Hence, our main goal in this
paper is to find methods and techniques for getting detailed in-
sights into these ongoing (sequential) processes of users when
collaboratively engineering an ontology. We present an adap-
tion of a Markov Chain based methodology, originally used
to detect memory (i.e., on how many previous clicks the next
click of a user depends on) and structure (e.g., the identification
of common sequences) in human navigational patterns through
websites, to analyze such sequential-patterns in collaborative
ontology-engineering projects (e.g., sequential patterns of how
users sequentially change properties of concepts). This choice
allows us to model human interaction paths in the change-log
data provided by our three datasets.

The main objectives of this paper are:

• By investigating the structured change-logs of ICD-11 for
sequential patterns, we want to identify a formal model
(the best performing Markov chain order), which describes
the ongoing processes when collaboratively engineering
an ontology.

• To gain new insights into potential memory effects present
in human usage activities when collaboratively working on
an ontology we make use of Markov chains and estimate
the best-performing model order by calculating two infor-
mation criteria. For example, a first order Markov Chain
model postulates that the next action taken is only depen-
dent on the current action, while higher order chains say
that the next action is dependent on a series of preceding
ones – i.e., we also analyze whether the human action se-
quences are memoryless or whether memory effects are
present.

• We are also interested whether we can predict the action
that is performed next reasonably well, using a specific
Markov Chain order model. By leveraging these models
we are also investigating structural patterns in such se-
quences, such as the identification of edit-strategies (i.e.,
bottom-up or top-down development) that users follow
while collaboratively editing the ontology.

Results: Our results indicate that the application of
Markov Chains on the change-logs of collaborative ontology-
engineering projects provides new and actionable insights into
the processes that occur while collaboratively creating an on-
tology for project administrators and ontology-engineering tool
developers. We show that sequential patterns of varying lengths
can be extracted and used to predict the most likely state that is
to occur next in the investigated project.

To the best of our knowledge, the work presented in this
paper represents the first and most detailed attempt to apply
Markov chains on the structured usage log of a large-scale col-
laborative ontology-engineering project to date.

Contributions: We provide (i) detailed descriptions of
the mapping and extraction process, and (ii) conduct a first
sequential-pattern analysis by applying the adapted method-
ology on ICD-11, representing a large-scale collaborative
ontology-engineering project. Additionally, we provide (iii)
brief explanations of how the gathered results can be interpreted
and utilized in productive environments. Our high-level contri-
bution is a novel approach of investigating and understanding
ongoing processes when collaboratively engineering an ontol-
ogy by making use of Markov chains to extract sequential usage
patterns.

The paper is structured as follows: In section 2 we review
related work. In section 3, we briefly describe and character-
ize the history of ICD-11, followed by a detailed explanation
of the mapping process of the used Markov Chain framework,
presented by Singer et al. [4], towards collaborative ontology
engineering-projects. We continue with a description, presen-
tation and discussion of the results from our sequential pattern
analysis in section 4. In section 6, we summarize our findings
and discuss potential implications. We conclude in section ??
and provide ideas for potential future work.

2. Related Work

For the analysis and evaluation conducted in this paper, we
identified relevant information and publications in the domains
of (i) collaborative ontology engineering, (ii) Markov Chain
models and (iii) collaborative authoring systems.

2.1. Collaborative Ontology Engineering

According to Gruber [5], Borst [6], Studer et al. [7] an on-
tology is an explicit specification of a shared conceptualiza-
tion. In particular, this definition refers to a machine-readable
construct (the formalization) that represents an abstraction of
the real world (the shared conceptualization), which is espe-
cially important in the field of computer science as it allows
a computer (among other things) to “understand” relationships
between entities and objects that are modeled in an ontology.

However, the field of collaborative ontology engineering and
its environment pose a new field of research with many new
problems, risks and challenges that first have to be identified
and can only then be dealt with. In general, contributors of col-
laborative ontology-engineering projects, similar to other col-
laborative online production systems (e.g., Wikipedia), engage
remotely (e.g., via the internet or a client server architecture) in
the development process to create and maintain an ontology.

A number of tools [8, 9, 10, 11] in the field of collabora-
tive ontology engineering were developed, specifically aiming
at supporting and augmenting different aspects of the collabo-
rative development processes of ontologies. For example, Se-
mantic MediaWikis [12] add semantic capabilities to traditional
Wiki systems. They are intended to help users navigating the
Wikis by introducing more meaningful semantic links and sup-
port of richer queries.

As an ontology represents a formalized and abstract version
of a specific domain, disagreements between authors on certain
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Figure 1: A screenshot of the iCAT interface, a custom tailored version of WebProtégé, developed for the collaborative engineering of ICD-11. The inline annotations
represent exemplary transitions between states for two of our three analyses. The letters A − C represent the sequential Edit-Strategy Path (see section 4.2) for one
user, while the roman numbers I − III constitute a representative sequential path for the User-Interface Sections Path analyses (see section 4.3) for another users.
Note, that for the Edit-Strategy Paths, every letter represents the transition between two consecutively changed concepts by the corresponding user. Analogously, for
the User-Interface Sections Paths each number represents one section of the user-interface that was used by the corresponding users to contribute to the ontology.

subjects can occur. Similar to face-to-face meetings, these col-
laborative ontology-engineering projects need tools that aug-
ment collaboration and help contributors in reaching consensus
when modeling (controversial) topics of the real world.

In fact, the majority of the literature about collaborative on-
tology engineering sets its focus on surveying, finding and
defining requirements for the tools used in these projects
[13, 14].

The Semantic Web community has developed a number of
tools aimed at supporting the collaborative development of
ontologies. For example, Semantic MediaWikis [12] and its
derivatives [8, 9, 11] add semantic, ontology modeling and col-
laborative features to traditional MediaWiki systems.

Protégé, and its extensions for collaborative development,
such as WebProtégé and iCAT [2] (see Figure 1 for a screenshot
of the iCAT ontology-editor interface) are prominent stand-
alone tools that are used by a large community worldwide
to develop ontologies in a variety of different projects. Both
WebProtégé and Collaborative Protégé provide a robust and
scalable environment for collaboration and are used in several
large-scale projects, including the development of ICD-11 [15].

Pöschko et al. [16], and Walk et al. [17] have created Prag-
matiX, a tool to browse an ontology and aspects of its history
visually, which provides quantitative insights into the creation
process, and applied it to the ICD-11 project. Strohmaier et al.
[18] investigated the hidden social dynamics that take place in
collaborative ontology-engineering projects from the biomedi-
cal domain and provide new metrics to quantify various aspects
of the collaborative engineering processes.

Falconer et al. [19] investigated the change-logs of collab-
orative ontology-engineering projects, showing that users ex-

hibit specific roles, which can be used to group and classify
users, when contributing to the ontology. Pesquita and Couto
[20] investigated if the location and specific structural features
can be used to determine if and where the next change is going
to occur in the Gene Ontology3. Strohmaier et al. [18] inves-
tigated the hidden social dynamics that take place in collabo-
rative ontology-engineering projects from the biomedical do-
main and provides new metrics to quantify various aspects of
the collaborative engineering processes. Wang et al. [21] have
used association-rule mining to analyze user editing patterns in
collaborative ontology-engineering projects. The approach pre-
sented in this paper uses Markov chains to extract much higher
detailed user-interaction patterns incorporating a variable num-
ber of historic editing information.

2.2. Markov Chain models
Previously, Markov Chain models have been heavily applied

for modeling Web navigation – some sample applications of
Markov Chains can be found in [22, 23, 24, 25, 26, 27]. Specific
specifications of the parameters used in a Markov Chain – e.g.,
transition probabilities or also the specification of model orders
– have previously been used to capture specific assumptions
about the real human navigational behavior. One frequently
used assumption is that human navigation on the Web is mem-
oryless. This is postulated in the Markovian assumption which
states that the next state only depends on the current one and
not on a sequence of preceding ones. This is, for example, also
modeled in the Random Surfer model in Google’s PageRank
[28].

3http://www.geneontology.org
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Previously, researchers also investigated whether human
navigation really is memoryless in a series of studies (e.g.,
[29, 25]). However, it was mostly shown that the benefit of
higher orders is not enough in order to compensate the extreme
high number of parameters needed and hence, the memory-
less model seems to be a quite plausible abstraction (see e.g.,
[30, 31, 26, 27]). Recently, a study picked up on these investiga-
tions and again suggested that the Markovian assumption might
be wrong [32]. However, this study did not reveal any statistical
significant improvements of higher order models. This problem
was solved by Singer et al. [4], who developed a framework for
determining the appropriate Markov Chain order. Their studies
on several navigational datasets also revealed that the memory-
less model indeed seems to be a plausible abstraction as it is
very difficult for higher order models to show statistically sig-
nificant improvements due to the high number of parameters
needed combined with shortcomings in available data. How-
ever, their work showed that on a topical level (by looking at
paths over topics instead of pages) clear memory effects can be
observed. In this work we adapt the corresponding framework
in order to apply it to the process of collaborative ontology en-
gineering.

2.3. Collaborative Authoring Systems
Research on collaborative authoring systems such as

Wikipedia has in part focused on developing methods and
studying factors that improve article quality or increase user
participation. For example, [33] have shown that for Wikipedia
and del.ico.us, two collaborative online authoring systems, par-
ticipation across users during the initial starting phase is un-
evenly distributed, resulting in few users (administrators) with
a very high participation and contribution rate while the rest
of the users (common users) exhibits little if any participa-
tion and contribution. However, over time contributions shift
from administrators towards an increasing number of common
users, which at the same time still make little contributions in-
dividually. Thus, an analysis of the distribution of work across
users and articles (as mentioned in [34]) can provide meaning-
ful insights into the dynamic aspects of the engineering pro-
cess. This line of work is also related to research on problems
that are common in these types of environments, such as the
free-riding and ramp-up problems [35]. The free-riding prob-
lem characterizes the fact that users would rather tend to enjoy
a resource than contribute to it. The ramp-up problem describes
the issue of motivating users to contribute to a system when ei-
ther content or activity (or both) in the overall system is very
low. Researchers have proposed different types of solutions to
these—sometimes called—knowledge-sharing dilemmas [35].
Wilkinson and Huberman [36] have shown that the quality of
Wikipedia articles correlates with the number of changes per-
formed on these articles by distinct users. More recent research
which uses collaborative authoring systems, such as Wikipedia
as a data source, focuses not only on describing and defining the
act of collaboration amongst strangers and uncertain situations
that contribute to a digital good [37] but also on antagonism and
sabotage of said systems [38]. It has also been discovered only
recently that Wikipedia editors are slowly but steadily declining

Suh et al. [39]. Therefore [40] have analyzed what impact re-
verts have on new editors of Wikipedia. Moreover, many pub-
lications also deal with automatic information and knowledge
extraction from Wikipedia [41, 42] due to the uprising of the
semantic web and open linked data.

Using Markov chains we want to learn more about the on-
going processes when collaboratively engineering an ontology,
thus the work presented in this paper partly builds upon this
and related lines of research and tries to expand them towards
collaborative ontology authoring systems.

3. Materials & Methods

The dataset used in this paper to illustrate the process of
identifying memory and structure in sequential usage patterns
in collaborative ontology-engineering projects exhibits the fol-
lowing characteristics: (i) at least two users have contributed
to the projects, and (ii) a structured log of changes (ChAO, see
section 3.2) is available, which can be mapped onto the underly-
ing ontology. These characteristics can be seen as the minimum
requirements to allow for an application of Markov Chains onto
collaborative ontology-engineering projects In section 3.1 we
will provide a brief history of ICD-11. To get a better under-
standing for the ChAO and how the data for the sequential pat-
tern analysis was extracted we outline its functionality in sec-
tion 3.2. To aid readers in understanding the analyses conducted
in this paper and its possible implications we provide an intro-
duction and overview of Markov Chains and the involved model
selection methodology in section 3.3 for determining the appro-
priate order of a Markov Chain which can help us to better un-
derstand memory effects. Section 3.4 describes the extraction
and generation process of the artificial session breaks.

ICD-11
concepts 48,771
changes 439,229
users 108
development tools iCAT
relative formality high
first change 18.11.2009
last change 29.08.2013
log duration (ca.) 4 years

Table 1: Characteristics of the International Classification of Diseases 11th

revision (ICD-11) used for the analysis to extract sequential patterns in collab-
orative ontology-engineering projects. The number of users is equivalent to the
number of users that have contributed at least 1 change to ICD-11.

3.1. The 11th Revision of the International Classification of
Diseases (ICD-11)

ICD-114, developed and maintained by the World Health Or-
ganization, is the international standard for diagnostic classifi-
cation that is used to encode information relevant to epidemi-
ology, health management, and clinical use. Health officials
use ICD in all United Nations member countries to compile
basic health statistics, to monitor health-related spending, and

4http://www.who.int/classifications/icd/ICDRevision/
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to inform policy makers. As a result, ICD is an essential re-
source for health care all over the world. ICD traces its origins
to the 19th century and has since been revised at regular inter-
vals. The current in-use version, ICD-10, the 10th revision of
the ICD, contains more than 20,000 terms. The development
of ICD-11 represents a major change in the revision process.
Previous versions were developed by relatively small groups of
experts in face-to-face meetings. ICD-11 is being developed
via a web-based process with many experts contributing to, im-
proving, and reviewing the content online. It is also the first
version to use OWL as its representation format.

3.2. The Change-Logs

The ontology used for the demonstration of the Markov
Chain-based sequential usage pattern analysis is created using a
custom tailored versions of WebProtégé called iCAT. The tool
provides a web-based interface as well as change-logs, which
can be directly mapped onto the underlying ontology.

Protégé and all of its derivatives use the Change and Anno-
tation Ontology (ChAO) [43] to represent changes. Change
types are ontology classes in ChAO and changes in the domain
ontology are instances of these classes (Figure 2). Similarly,
notes that users attach to classes or threaded user discussions
are also stored in ChAO. In fact, ChAO records two types of
changes, so-called “Atomic” and “Composite” changes.

Figure 2: Excerpt of the Change and Annotation Ontology (ChAO) used by
Protégé [43]. Boxes represent classes and lines represent relationships.

“Atomic” changes represent one single action within the on-
tology and they consist of several different types of changes
such as Superclass Added, Subclass Added or Property Value
Changed. “Composite” changes combine several atomic
changes into one change action that usually corresponds to a
single action by a user. For example, moving a concept in-
side the ontology is represented by one composite change that
consists of—at least—four “atomic” changes for removing and
adding parent and child relations for all involved concepts. Ev-
ery change and annotation provides information about the user
who performed it, the involved concept or concepts, a time
stamp and a short description of the changed or annotated con-
cepts/properties. Whenever we talk about changes we refer
to the changes stored in the ChAO, which are always actual
changes to the ontology (as opposed to proposed changes).

As iCAT users collaborate in developing their ontology,
many use the discussion features of the tools to add comments
and annotations to the classes in the ontology. These anno-
tations are essential for collaboration as they can be attached

to concepts, for example as Explanations, to justify certain
changes or as Comments to give feedback about a concept and
to carry out discussions. These comments and annotations are
also represented as instances in ChAO.

3.3. Markov Chain Model Selection
For our analysis we will rely on the methodology initially

presented in Singer et al. [4].
For an easier understanding of the collected results, we will

provide a description of the Markov Chain Model Selection
Methodology, which will also help readers to get a better un-
derstanding for the potential implications of our results.

3.3.1. Markov Chain definition
Markov Chain models are well-known tools, among others,

for modeling navigation on the web. In general, a Markov
Chain consists of a finite state-space and the corresponding
transition probabilities between these states. For our analysis,
we will make us of the transition probabilities to identify likely
transitions for a variety of different states. To be able to do so,
it is important to understand the nature of Markov Chains. For-
mally, a finite and discrete (in time and space) Markov Chain
can be seen as a stochastic process that contains a sequence
of random variables – e.g., X1, X2, . . . , Xn. One of the most
well-known hypotheses about Markov Chains is the so-called
Markovian assumption that postulates that the next state of a se-
quence only depends on the current state and not on a sequence
of preceding ones. Such a first-order Markov Chain holds if:

P(Xn+1 = xn+1|X1 = x1, X2 = x2, ..., Xn = xn) =

P(Xn+1 = xn+1|Xn = xn) (1)

We assume time-homogeneity for all our Markov Chains and
for simplification we will refer to data as a sequence D =

(x1, x2, ..., xn) with states from a finite set S . Furthermore, as
we are also interested in higher order Markov Chains, we can
state that in a k-th order Markov Chain the next state depends on
k previous ones. One advantage of such representation is that
we can easily convert higher order Markov Chains to first-order
Markov Chains by modeling all possible sequences of length k
as states and adjusting the probabilities accordingly. Hence, we
can focus on defining the concepts for first-order chains solely,
as this applies for higher ones as well.

A Markov Chain model is usually represented via a stochas-
tic transition matrix P with elements pi j = p(x j|xi) where it
holds that for all i:∑

j

pi j = 1 (2)

For easier understanding, one could think of a first-order
Markov Chain model as a matrix, where each column and row
correspond to a state of the state-space and the elements within
the matrix represent the transition probabilities to and from
each state towards the corresponding other states. For higher
order Markov Chain models, the states would include the com-
binations of all states, which is drastically increasing the state-
space and thus, the complexity of the Markov chain.

5



3.3.2. Maximum Likelihood Estimation (MLE)
To be able to determine the transition probabilities pi j be-

tween the states xi and x j we apply equation 3, where ni j corre-
sponds to the total number of transitions between states xi and
x j:

pi j =
ni j∑
j ni j

(3)

Hence, the maximum likelihood estimate (MLE) for the tran-
sition probability pi j simply is the number of times we observe
a transition between state xi to state x j in our data D divided
by the total number of outgoing transitions from state xi to any
other state.

3.3.3. Model Estimation
As our goal is to determine the most appropriate Markov

Chain order we need to establish some methods for choosing
the right ones.

As described in more detail in Singer et al. [4], we calcu-
late the Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC) to determine the goodness of fit for our
extracted Markov Chain models.
Likelihood Ratio Test. To be able to calculate AIC and BIC,
we have to calculate the likelihood ratio tests, which are used
for comparing two competing hypotheses, the null-model and
the alternative-model. The test calculates the log likelihood ra-
tio, which gives us an indicator quantifying how much more
likely the observed data is with the alternative model compared
to the null model. As a result, we always compare lower order
models with higher order models. We follow the notation by
Tong [44] who defines the log likelihood ratio as kηm:

kηm = −2(L(P(D|θk)) − L(P(D|θm))) (4)

Where L(P(D|θk) represents the MLE for the null-model,
whileL(P(D|θm) represents the MLE for the alternative model.
Akaike information criterion (AIC). This information crite-
rion can help us to determine the optimal model from a class of
competing models – i.e., the appropriate Markov Chain order.
The final method is based on the minimization of the AIC –
minimum AIC estimate also called MAICE – [45] and has been
first used for Markov Chains by Tong [44]. We define the AIC
based on the work by Tong [44]:

AIC(k) = kηm − 2(|S |m − |S |k)(|S | − 1) (5)

Basically AIC subtracts the degrees of freedom from the
likelihood ratio test. In our analysis, the degrees of freedom
(2(|S |m − |S |k)(|S | − 1)) represent two times the difference be-
tween the states for the null-model and the alternative model.
The basic idea is to choose m reasonable high – i.e., the maxi-
mum order we want to test against – and test lower order models
until the optimal Markov Chain order is found. The best one is
the one that exhibits the lowest AIC score.
Bayesian Information Criterion (BIC). This information cri-
terion is very similar to the AIC except for the difference in pe-
nalization, as it increases negative weight on higher order mod-
els even more [46]:

BIC(k) = kηm − (|S |m − |S |k)(|S | − 1)ln(n) (6)

We proceed similar as for AIC and choose m reasonable high.
The specific penalty function is the degree of freedoms multi-
plied with the natural logarithm of the number of observations
n [46], where an observation is always represented as a state in
the change-logs.

3.3.4. Evaluation
Exceeding our MLE methods for determining the appropri-

ate Markov Chain order, we also use cross validation prediction
for this task. The main idea behind this approach is to calcu-
late the parameters on a training set and validate the model on
an independent test set. One needs to note that we also apply
Laplace smoothing in this case in order to also be able to predict
states that are only present in the test set and not in the training
set. For reducing variance we perform a stratified 7-fold cross
validation. In this case we refer to the term stratified as we try
to keep the number of visited states in each fold equal.

The validations is based on the task of predicting the next
step in a path of the test set. This also enables us to get detailed
insights into the prediction possibilities of distinct Markov
Chain order models. Simply, one could predict the next state
by taking the one with the highest probability in the transition
matrix. For clearly calculating the prediction accuracy we mea-
sure the average rank of the actual state of the test path in the
sorted probabilities from the transition matrix P. Hence, we
look up the rank of the next state xn+1 in the sorted list of transi-
tion probabilities of the current state xn (or series of preceding
states for higher order models). Next, we average over the rank
of all observations in the test set. We follow the notation of
Singer et al. [4] and define the average rank r(D f ) of a fold D f

for some model Mk the following way5:

r(D f ) =

∑
i
∑

j ni jri j∑
i
∑

j ni j
, (7)

where ni j is the number of transition from state xi to state x j

in D f and ri j denotes the rank of x j in the i-th row of P. As
frequently ties occur in these rankings, we assign the average
rank to such ties. This method also includes a natural Occam’s
razor (penalty) for higher order models. Finally, we average
over all folds and suggest the model with the lowest average
rank.

This method also allows us to get detailed insights into the
predictive power of our models, datasets and investigations.

3.4. Session Extraction

As browsing and identifying concepts to work on in an
ontology, especially with ontologies the size of ICD-11, are
still time-consuming tasks, we decided to add artificial session
breaks which allow us to identify (or at least approximate) con-
cepts and properties that users will work on, after or shortly be-
fore they take a break from editing the ontology. These session
break states are named BREAK throughout all of our analyses
and are specifically used to uncover the states before and after

5alternatively, one could also measures like perplexity
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a break occurs in the change-logs for all analyses that investi-
gate user-based activities (opposed to concept-based activities,
which are only analyzed in section 4.3).

Timespans in minutes

A
cc

um
ul

at
ed

 p
er

ce
nt

ag
e 

of
 ti

m
es

pa
n 

oc
cu

rr
en

ce
s

Timespans between changes

ICD11

0−1 1−5 5−10 10−15 15−30 30−60 60−120 >120

80
90

95
10

0

Figure 3: This plot depicts the percentage of all changes that have been per-
formed within a specific timespan for ICD-11. The x-axis lists the timespans
in minutes and the y-axis lists the accumulated percentage of all timespans be-
tween two consecutively conducted changes for every user. To avoid the intro-
duction of too many artificial session breaks, we decided to insert breaks for
timespans between changes that are greater to the timespan so that > 95% of
all changes do not introduce new sessions. In the case of ICD-11, this timespan
is the 1−5 minutes one, meaning that BREAKs have been introduced if the two
changes in question are apart longer than 5 minutes.

Figure 3 depicts the total amount of timespans between the
changes of each user for ICD-11. The y-axis depicts the
percentage of all changes performed within the correspond-
ing timespan on the x-axis. The x-axis depicts the different
timespan intervals in minutes. The majority (> 95%) of all
changes in ICD-11 are performed within 5 minutes. Thus, if
two changes of the same user are apart longer than 5 minutes,
we have introduced an artificial session break represented as a
BREAK state in all the conducted user-based analyses.

3.5. Limitations
It is important to understand that it was not possible to recre-

ate the structure of the ontology for every single change across
our observation period. This is partly due to a lack of data in
the change-logs but also due to computational feasibility, as we
would have to create and store n revisions of each ontology
where n equals the number of changes performed on each on-
tology. Therefore, we decided to conduct our analysis, using all
ontologies as is at the latest point in time, which is also what
would be used in real-world usage scenarios.

However, this approach introduces a potential bias to our
Edit-Strategy Paths analyses. Hence, to measure the bias we
collected every change that was performed on a concept, which
was moved to a different location in the ontology at a later point
in time. Applying this selection criterion on our change dataset,
we collected a total of 116, 204 of 439, 229 changes for ICD-11.
This represents about 1/4 of all changes in the change-log.

Note, that the model estimation methods described in this
work balance the goodness of fit with the number of parameters

needed for each Markov chain order model. This is necessary,
as specifically higher order models need an exponential grow-
ing number of parameters which might not be reflected by the
statistical significant benefit against lower order models. This
is also reflected by the initial choice about the set of states to
consider. Hence, it is also necessary to have the availability
of large change-logs in order to have the opportunity to detect
higher order Markov chain models. The required total num-
ber of available observations, that is the number of performed
changes, for detecting higher orders is directly related to the
number of unique states that are extracted. For example, if
all changes are mapped on two unique states, smaller change-
logs might already yield satisfying results, whereas higher num-
bers of unique states might require exponentially larger change-
logs for the detection of higher orders. Therefore, without
enough observations (changes), the identification of higher or-
der Markov Chain models is either very hard and can only be
approximated or not possible at all. As can be seen in Table 1
ICD-11 satisfies this requirement with a total amount of close
to 440, 000 changes.

4. Results

In the following, we present the model selection results of
the conducted sequential pattern analyses for ICD-11. In sec-
tion 4.1 we investigate if and to what extent memory and struc-
ture of sequential patterns of performed change types can be
detected.

To see where and how users contribute to the ontology and
if they exhibit sequential patterns when doing so, we analyzed
edit strategy patterns (i.e., bottom-up or top-down editing be-
havior; cf. section 4.2)?

In section 4.3 we investigate if users have to frequently
switch between the different sections of the user-interface while
contributing to ICD-11 and how often (and in which order) dif-
ferent sections of the user-interface are used to add information
for a concept.

4.1. Change-Type Paths
The analysis of change types provides information about the

type of a change which a user will most likely conduct next. To
reduce the state space we aggregated similar types of changes
into more abstract change-classes.

Path Extraction: For analyzing and extracting change-type
sequences we iterated over all the changes of each user in our
datasets, mapped the different types of changes to our aggre-
gated change-classes, and stored them as chronologically or-
dered lists for each user and each dataset individually. Multiple
consecutive identical change types of the same user on the same
concept were merged into one self-loop. For example, if the
same user consecutively replaced properties (EDIT REPLACE)
on the same concept multiple times we would merge these mul-
tiple EDIT REPLACE actions into one single self-loop from the
state EDIT REPLACE to the state EDIT REPLACE. This ap-
proach has been taken to avoid the detection of higher order
Markov Chains solely due to repetitive tasks (i.e., consecutively
replacing values of properties of the same concept).
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Figure 4: Change Type Paths Model Selection and Evaluation: This plot
depicts the results of the AIC and BIC model selection criteria as well as the
stratified cross-fold evaluation for the Change Type Paths analysis. The x-axis
represents the different Markov Chain orders. The left y-axis lists the AIC and
BIC values of our model selection, while the right y-axis shows the average
position values for the prediction task. The filled elements represent the corre-
sponding Markov Chain models, which achieved the best (lowest) average po-
sition score in the prediction task or lowest AIC and BIC values for the model
selection. The information criteria, AIC and BIC, suggest the usage of a third-
and second-order Markov Chain respectively. The prediction task performed
best relying on the predictive information extracted from a third-order Markov
Chain.

State Description: For this analysis we aggregated the
change-types into more abstract change-classes to minimize the
necessary state space for detecting Markov Chains, which still
provide useful information for curation and work-delegation
purposes. The states CREATE, MOVE and REMOVE include
all changes that have a corresponding effect on classes or con-
cepts of the ontology. Every state that has the prefix EDIT
aggregates all changes performed on properties of the ontol-
ogy. For example, when a user performs a change of type
EDIT ADD a value is added to a property of a concept, while
EDIT REPLACE would be the description of a change that re-
places an already existing value of a property with a new (non
empty) value. The states EDIT IMPORT and BOT contain
changes of concepts to properties with references (or imports)
to other ontologies as well as changes marked as automatically
performed. All changes that are collected under OTHER are
changes that are not changing the content or the structure of the
ontology.

Model Selection: We calculated AIC and BIC for the ex-
tracted Markov Chain models of varying order (Figure 4) to
identify the appropriate order that reflects to what extent con-
tributors exhibit memory patterns when changing concepts.

Both AIC and BIC suggest the usage of a third- and second-
order Markov Chain respectively. The likelihood ratio tests
strengthen this observation as a second-order Markov Chain
for ICD-11 is significantly different from a first-order Markov
Chain, thus suggesting the selection of a second-order Markov
Chain model for predicting the next change-type.

Evaluation: To determine which order of a Markov Chain
contains the highest predictive power, a stratified cross-fold val-

idation (see Figure 4; section 3.3.4 for a detailed explanation)
was conducted.

As depicted in Figure 4, the stratified cross-fold validation
encourages the usage of a third-order Markov Chain for ICD-
11.

The combined results of the model selection tasks indicate
the best performance with the usage of a third-order Markov
Chain for ICD-11 for the task of predicting the change type a
user is most likely to conduct next.

4.2. Edit-Strategy Paths
The analysis of Edit Strategy Paths focuses on the investiga-

tion of relative movement along the ontological structure that is
to be created. Using the gathered data we can identify if users
who are contributing to the ontology likelier follow a bottom-up
or top-down manner. For example, if users would create or edit
an ontology in a bottom-up manner, they would first model very
specific concepts and continue to devote their work on more
abstract concepts, while a top-down approach would work the
opposite way. Note, that this analysis can identify edit strategy
tendencies, however could lead to wrong conclusions without
manual verification of the change-logs. For example, if users
generally tend to work on concepts in an alphabetical order, it
is possible that this analysis could yield either, a bottom-up, a
top-down or a non apparent/random edit strategy, even though
users do not purposely move along the semantic structure of the
underlying ontology when contributing to the system. To make
sure that our datasets do not exhibit such behaviors we have
manually investigated the structured log of changes of ICD-11
to verify that the mentioned kind of contribution behavior is not
present.

In particular, this analysis allows us to predict if the concept a
user is going to contribute to next is on the same, a lower (more
abstract) or a higher (more specialized) hierarchy-level of the
ontology. Using the gathered information we can infer if users
follow a top-down or bottom-up edit strategy while contributing
to ICD-11.

Path Extraction: The sequences used for this analysis were
gathered by calculating the shortest paths between all the con-
cepts of the ontology and the root node, for ICD-11 being ICD-
Category which is an equivalent of owl:Thing, following isA
relationships. Analogously to the previous analysis, we merged
multiple self-loops, represented by consecutive changes per-
formed by the same user on the same concept, into one sin-
gle transition (i.e., multiple transitions between SAME into one
transition from SAME to SAME) to avoid the generation of
higher-order self-loop-based Markov Chain models. Users who
contributed less than 2 changes have been removed for this anal-
ysis, as no level transition could be observed.

A sample path is depicted in Figure 1. When following
the annotations A − C, which represent the changes performed
by one user, we can extract the following path: DOWN, UP,
DOWN.

State Descriptions: The states used for this analysis indi-
cate if a user, when contributing to the ontology, moved either
closer (state UP), further away (state DOWN) or kept the same
distance (state SAME) to the root concept of the ontology.
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Model Selection: We calculated AIC and BIC for the ex-
tracted Markov Chain models (see Figure 5) to identify the
appropriate Markov Chain order when modeling edit strategy
patterns of contributors changing concepts. For ICD-11 both
AIC and BIC suggest a fourth- and third-order Markov Chain
respectively. Our likelihood ratio tests show that a third-order
Markov Chain for ICD-11 is still significantly different from a
fifth-order Markov Chain, indicating that either a third, fourth-
or fifth-order Markov Chain provides the best balance between
model complexity and predictive power.
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Figure 5: Edit Strategy Paths Model Selection and Evaluation: This plot
depicts the results of the AIC and BIC model selection criteria as well as the
stratified cross-fold evaluation for the Edit-Strategy Paths analysis. The x-axis
represents the different Markov Chain orders. The left y-axis lists the AIC
and BIC values of our model selection, while the right y-axis shows the aver-
age position values for the prediction task. The filled elements represent the
corresponding Markov Chain models, which achieved the best (lowest) aver-
age position score in the prediction task or lowest AIC and BIC values for the
model selection. The information criteria, AIC and BIC, were able to detect a
fourth- and third-order Markov Chain respectively. The prediction task yielded
the best results with a fifth-order Markov Chain model.

Evaluation: To determine the best-fitting Markov Chain
model orders to predict the next relative depth-level a strati-
fied cross-fold validation (see Figure 5) was conducted. The re-
sults of our prediction experiment suggest a fifth-order Markov
Chain for ICD-11. As the differences between the higher-order
Markov Chains and the third-order Markov Chain are very
small, yet significantly different, we agree with BIC and the
significance test on the usage of a third-order Markov model
for predictive tasks, due to the high increase in complexity of
the higher-order models.

4.3. User-Interface Sections Paths

The goal of this analysis is to investigate if we can map
changes that occur in the ontology to actual areas of the user-
interface of the used collaborative ontology-engineering tool.
We investigate two different approaches: First, the user-based
approach, where we analyze the sections of the user-interface
used by contributors when editing the ontology. Second, the
concept-based approach, where we investigate which sections
of the user-interface are used when concepts are populated with

data. If patterns can be detected, ontology-engineering tool de-
velopers can use this information to minimize the necessary
effort for users to be able to contribute. It is important to
note that not all properties and sections of iCAT, the ontology-
development tool used to create ICD-11, are already actively
used as ICD-11 is still under active development.
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(a) User-based approach
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(b) Concept-based approach

Figure 6: User-Interface Sections Path Model Selection and Evaluation:
This plot depicts the results of the AIC and BIC model selection criteria as
well as the stratified cross-fold evaluation for the user- and concept-based ap-
proaches of the User-Interface Sections Paths analyses. The x-axes represent
the different Markov Chain orders. The left y-axes list the AIC and BIC values
of our model selection, while the right y-axes show the average position values
for the prediction task. The filled elements represent the corresponding Markov
Chain models, which achieved the best (lowest) average position score in the
prediction task or best (lowest) AIC and BIC values for the model selection.
For both approaches AIC and BIC were able to detect a second- and first-order
Markov Chain respectively for both approaches, while the prediction task pro-
duced the best average position with a Markov Chain of third order in both
approaches.

Path Extraction To be able to analyze sequential patterns
of different user-interface sections we extracted the chronolog-
ically ordered list of changed properties for (i) each user and
(ii) each concept. We then continued by mapping the extracted
properties to sections in the user-interface of iCAT. The states
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Table 2: This Table depicts a summary of all gathered results for ICD-11 and the performed analyses of section 4. The numbers in this table represent the
calculated and suggested Markov chain orders from our model selection (AIC and BIC) and evaluation tasks (Prediction Task). Best Balance indicates the manually
selected best-fitting order of a Markov chain, which represents the best trade-off between complexity of the Markov chain (and thus calculations) and the average
position in our evaluation task.

Markov chain orders for
AIC BIC Prediction Task Best Balance

Change-Type Paths (cf. section 4.1) 3 2 3 3
Edit-Strategy Paths (cf. section 4.2) 4 3 5 1

User-Interface Sections Paths (User) (cf. section 4.3) 2 1 3 1
User-Interface Sections Paths (Concept) (cf. section 4.3) 2 1 3 1

used for the four different approaches of the User-Interface
Sections Paths analysis are the different sections available in
the user-interfaces of iCAT. Whenever a change did not affect
a property (e.g., because the change-action dealt with moving
or creating a concept) the no property state was used. To get
a better feeling for the interface of the ontology-editor used
to develop ICD-11 please refer to Figure 1. Analogously to
the previous analyses, consecutive changes of the same user on
the same concept on the same property have been merged into
one self-loop for the user-based analysis. For the concept-based
analysis consecutive changes on the same concept and property
have been merged into one self-loop.

A sample path is depicted in Figure 1. When following the
annotations I − III, which represent consecutive changes per-
formed by one user, using the highlighted sections of the user-
interface, the following path can be extracted: Title & Defini-
tion, Terms, Causal Properties.

State Descriptions: The states for this analysis are rep-
resented by the different user-interface sections of iCAT, the
ontology-engineering tool used to develop ICD-11. An excerpt
of all different user-interface sections of iCAT can be seen in
Figure 1.

Model Selection: We calculated AIC and BIC for the ex-
tracted Markov Chain models (see Figures 6(a) and 6(b)) to find
out the appropriate Markov Chain order when modeling how
users switch between sections of the interface when contribut-
ing to the ontology. For both approaches AIC and BIC suggest
a second- and first-order Markov Chain respectively. The con-
ducted significant tests show that a second-order Markov Chain
for both approaches is significantly different from a first-order
Markov Chain, indicating that either a second-order or first-
order Markov Chain provide the best balance between model
complexity and predictive power.

Evaluation: To determine the predictive power of the inves-
tigated Markov Chain models of different orders for predicting
the section most probably used to edit a property next, a strat-
ified cross-fold validation (see Figure 6) was conducted. For
both approaches, the user-based approaches and the concept-
based approach, a third-order Markov Chain performed best.
However, due to the fact that the determined third-order Markov
Chains performed virtually equally as good as a first-order
Markov Chain, it is best to use a first-order Markov Chain to
predict the next user-interface section that a user is going to
use, as it provides the best balance between model complexity
(and thus computation time) and predictive power.

5. Discussion

In section 5 we have shown that the presented and adapted
Markov chain model selection framework provides new in-
sights into the ongoing development processes of collaborative
ontology-engineering projects. As shown in Table 2, Markov
chains of orders three to five yield the best results in our predic-
tion task. The information criteria AIC and BIC, putting a nega-
tive bias on model complexity, tend to suggest minimally lower
Markov chain orders. After manually inspecting and compar-
ing the performance of the different Markov chain models and
the model complexity, we identified that a third-order Markov
chain provided the best balance between said attributes for the
Change-Type Paths analysis. For the Edit-Strategy Paths as
well as both approaches of the User-Interface Sections Paths
analyses a first-order Markov chain constitutes the best mix be-
tween model complexity and performance.

To further expand on the usefulness of Markov chains for
analyzing change-logs of collaborative ontology-engineering
projects we will provide an exemplary investigation of the
structure of the extracted Markov chain model for the User-
Interface Sections Paths analysis including information about
potential use-cases in productive environments.

5.1. Results of the User-Interface Sections Paths Analysis
Figure 7(a) depicts the user-interface section sequence for

properties changed on concepts in ICD-11 and shows that
sections of the user-interface frequently receive consecutive
changes with minimal transition probabilities to different sec-
tions of the user-interface. All sections, which where rarely
used, have been removed from Figure 7 as they do not hold im-
portant information but their removal drastically increased the
readability of the plots. When directly comparing the self-loops
for the user-based approach (see Figure 7(a)) and the concept-
based approach (see Figure 7(b)), we can deduce, based on
the high transition probabilities between the same sections and
the low transition probabilities between different sections) that
users have a higher tendency towards consecutively inserting
the same set of properties (displayed in the same section of the
user-interface), into multiple concepts rather than completing
all properties of a concept before moving on to change the next
concept.

As depicted in the histograms of Figures 7(a) and 7(b), the
majority of changes were concentrated on a few selected sec-
tions, which are Title & Definition, Classification Properties
and Terms.
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Figure 7: Results for the User-Interface Sections Paths analysis: The states for these analyses are represented by the different sections of the user-interfaces of the
ontology-engineering tool iCAT. The transition probabilities for the first-order Markov Chains are depicted in the transition maps (bottom row) in Figures 7(a) and
7(b). Columns and rows represent the states (for k = 0), where rows are source states and columns are target states, indicating that a sequence always is read from
row to column. Darker colors represent higher transition probabilities while lighter colors indicate lesser transition probabilities. Absolute probability values are
dependent on the number of investigated states, hence relative differences are of greater interest. Across both approaches a trend towards self-loops can be observed,
which is marginally higher and less diverse for the user-based approach in ICD-11, rather then the concept-based approach. The histograms in Figures 7(a) and
7(b) depict the absolute number of occurrences for each section (at k = 0) for ICD-11 in alphabetical order. Note, that the y-axis for both histograms are scaled
differently. Sections with very low numbers of observations have been removed from the plots for reasons of readability. All sections, which where rarely used,
have been removed from this figure as they do not hold interesting information but their removal drastically increased the readability of the plots. Note, that the
differences in frequencies of the different user-interface sections

Contributors of ICD-11 also exhibit a very high tendency to
either change no property or a property of the Title & Definition
section when resuming work after a BREAK.

Interpretation & Practical Implications: When looking at
the results of this analysis, we can see that the functionality of
the ontology-development tool might be a deciding factor on
how users interact with the ontology when contributing. This
is especially evident when considering the very high self-loop
count for ICD-11, which is most likely supported and empha-
sized by the export functionality present in iCAT, which al-
lows users to export parts of the ontology into a spreadsheet,
which later-on has to be manually re-inserted. Conveniently,
when switching concepts, the previously selected/edited prop-
erty remains selected/active in iCAT, allowing for quick edit-
workflows when inserting data for the same property (and thus
same section) from external resources for multiple concepts.

Furthermore, it is of no surprise that the section Title & Defi-
nition exhibits a very high self-loop probability, given that it (i)
contains the most basic properties with the highest priority to be
added/completed and (ii) is the default section that is displayed

once a user logs into the system.

The information collected with this analysis is of potential
interest for project administrators, as they can adapt the engi-
neering process to the needs of either the community or the
project itself. For example, if active collaboration for different
parts of the ontology is of utmost importance, the export func-
tionality could be restricted, only allowing an export for certain
parts of the ontology. Ontology-editor developers can use the
transition probabilities between different sections of the user-
interface to adapt, maybe even dynamically adapt the interface
towards the inherent contribution processes of the community,
which is creating the ontology in question. For example, parts
of the interface could automatically adapt towards the processes
of the users, relying on the transition probabilities of the ex-
tracted Markov Chains, to allow for an easy transition between
This could mean that the sections
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6. Summary & Conclusions

The novel application of Markov Chains on change-logs of
collaborative ontology-engineering projects represents a first
step towards a broader methodology to collect new insights
about the processes and interactions of users with the collabo-
ratively developed ontology and the used ontology-engineering
tool. The main contributions of this paper are: (i) The novel
application of (higher order) Markov Chains on collaborative
ontology-engineering projects to extract and analyze sequential
patterns. Moreover, we have shown that (ii) analyzing sequen-
tial patterns can be used to gather new insights into various as-
pects for collaborative ontology-engineering projects and (iii)
determined the model that provided the best balance between
model complexity and predictive power in our model selection
task.

Additionally, we have shown that historic change-log infor-
mation of collaborative ontology-engineering projects can be
used to predict the state that is most likely to occur in the sys-
tem next, using Markov chains. In the conducted prediction
experiment, several Markov chains of orders > 1 have been re-
trieved, indicating that the markovian assumption does not hold
for all aspects of the development processes in collaborative
ontology-engineering projects.

To further expand on the usefulness of Markov chains, we
have provided an exemplary investigation of the structure of a
first-order Markov chain and its implications and use-cases for
productive environments.

As change-tracking and even click-tracking data will become
available more broadly, we believe that the mapping analysis
conducted in this paper and the possible benefits of putting the
results into practical use represent an import step towards even
better (and simpler) ontology editors, which can dynamically
anticipate the editing-style of the community. Even project ad-
ministrators can augment the results of the analysis, for exam-
ple by allowing for easier delegation of work to the right users.

We hope that the presented approach will help project ad-
ministrators, ontology-engineering tool developers and, most
important, the community which is developing an ontology col-
laboratively, to devise new approaches, tools, mechanisms or
even full methodologies to increase the quality of the resulting
ontology and make contributing to the projects as easy as pos-
sible.
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